Mister Exam

Other calculators

Derivative of (1+ln^2(x))*(ln(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/       2   \       
\1 + log (x)/*log(x)
$$\left(\log{\left(x \right)}^{2} + 1\right) \log{\left(x \right)}$$
(1 + log(x)^2)*log(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of is .

        The result of the chain rule is:

      The result is:

    ; to find :

    1. The derivative of is .

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2           2   
1 + log (x)   2*log (x)
----------- + ---------
     x            x    
$$\frac{\log{\left(x \right)}^{2} + 1}{x} + \frac{2 \log{\left(x \right)}^{2}}{x}$$
The second derivative [src]
        2                                       
-1 - log (x) + 4*log(x) - 2*(-1 + log(x))*log(x)
------------------------------------------------
                        2                       
                       x                        
$$\frac{- 2 \left(\log{\left(x \right)} - 1\right) \log{\left(x \right)} - \log{\left(x \right)}^{2} + 4 \log{\left(x \right)} - 1}{x^{2}}$$
The third derivative [src]
  /       2                                       \
2*\4 + log (x) - 6*log(x) + (-3 + 2*log(x))*log(x)/
---------------------------------------------------
                          3                        
                         x                         
$$\frac{2 \left(\left(2 \log{\left(x \right)} - 3\right) \log{\left(x \right)} + \log{\left(x \right)}^{2} - 6 \log{\left(x \right)} + 4\right)}{x^{3}}$$