Mister Exam

Other calculators


(1-x)/x^2

You entered:

(1-x)/x^2

What you mean?

Derivative of (1-x)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - x
-----
   2 
  x  
$$\frac{- x + 1}{x^{2}}$$
d /1 - x\
--|-----|
dx|   2 |
  \  x  /
$$\frac{d}{d x} \frac{- x + 1}{x^{2}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  1    2*(1 - x)
- -- - ---------
   2        3   
  x        x    
$$- \frac{1}{x^{2}} - \frac{2 \cdot \left(- x + 1\right)}{x^{3}}$$
The second derivative [src]
  /    3*(-1 + x)\
2*|2 - ----------|
  \        x     /
------------------
         3        
        x         
$$\frac{2 \cdot \left(2 - \frac{3 \left(x - 1\right)}{x}\right)}{x^{3}}$$
3-th derivative [src]
  /     4*(-1 + x)\
6*|-3 + ----------|
  \         x     /
-------------------
          4        
         x         
$$\frac{6 \left(-3 + \frac{4 \left(x - 1\right)}{x}\right)}{x^{4}}$$
The third derivative [src]
  /     4*(-1 + x)\
6*|-3 + ----------|
  \         x     /
-------------------
          4        
         x         
$$\frac{6 \left(-3 + \frac{4 \left(x - 1\right)}{x}\right)}{x^{4}}$$
The graph
Derivative of (1-x)/x^2