Mister Exam

Derivative of √1-x²+arcsin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___    2            
\/ 1  - x  + asin(2*x)
$$\left(- x^{2} + \sqrt{1}\right) + \operatorname{asin}{\left(2 x \right)}$$
sqrt(1) - x^2 + asin(2*x)
The graph
The first derivative [src]
             2      
-2*x + -------------
          __________
         /        2 
       \/  1 - 4*x  
$$- 2 x + \frac{2}{\sqrt{1 - 4 x^{2}}}$$
The second derivative [src]
  /          4*x     \
2*|-1 + -------------|
  |               3/2|
  |     /       2\   |
  \     \1 - 4*x /   /
$$2 \left(\frac{4 x}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} - 1\right)$$
The third derivative [src]
  /         2  \
  |     12*x   |
8*|1 + --------|
  |           2|
  \    1 - 4*x /
----------------
           3/2  
 /       2\     
 \1 - 4*x /     
$$\frac{8 \left(\frac{12 x^{2}}{1 - 4 x^{2}} + 1\right)}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}}$$