Mister Exam

Other calculators

Derivative of 1-(2-x/a)^n

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           n
    /    x\ 
1 - |2 - -| 
    \    a/ 
$$1 - \left(2 - \frac{x}{a}\right)^{n}$$
1 - (2 - x/a)^n
Detail solution
  1. Differentiate term by term:

    1. The derivative of the constant is zero.

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
         n
  /    x\ 
n*|2 - -| 
  \    a/ 
----------
  /    x\ 
a*|2 - -| 
  \    a/ 
$$\frac{n \left(2 - \frac{x}{a}\right)^{n}}{a \left(2 - \frac{x}{a}\right)}$$
The second derivative [src]
         n        
  /    x\         
n*|2 - -| *(1 - n)
  \    a/         
------------------
             2    
    2 /    x\     
   a *|2 - -|     
      \    a/     
$$\frac{n \left(1 - n\right) \left(2 - \frac{x}{a}\right)^{n}}{a^{2} \left(2 - \frac{x}{a}\right)^{2}}$$
The third derivative [src]
         n               
  /    x\  /     2      \
n*|2 - -| *\2 + n  - 3*n/
  \    a/                
-------------------------
                 3       
        3 /    x\        
       a *|2 - -|        
          \    a/        
$$\frac{n \left(2 - \frac{x}{a}\right)^{n} \left(n^{2} - 3 n + 2\right)}{a^{3} \left(2 - \frac{x}{a}\right)^{3}}$$