Mister Exam

Other calculators

Derivative of 1-ln(x/(x-3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       /  x  \
1 - log|-----|
       \x - 3/
1log(xx3)1 - \log{\left(\frac{x}{x - 3} \right)}
1 - log(x/(x - 3))
Detail solution
  1. Differentiate 1log(xx3)1 - \log{\left(\frac{x}{x - 3} \right)} term by term:

    1. The derivative of the constant 11 is zero.

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=xx3u = \frac{x}{x - 3}.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddxxx3\frac{d}{d x} \frac{x}{x - 3}:

        1. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=xf{\left(x \right)} = x and g(x)=x3g{\left(x \right)} = x - 3.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Apply the power rule: xx goes to 11

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Differentiate x3x - 3 term by term:

            1. The derivative of the constant 3-3 is zero.

            2. Apply the power rule: xx goes to 11

            The result is: 11

          Now plug in to the quotient rule:

          3(x3)2- \frac{3}{\left(x - 3\right)^{2}}

        The result of the chain rule is:

        3(x3)x(x3)2- \frac{3 \left(x - 3\right)}{x \left(x - 3\right)^{2}}

      So, the result is: 3(x3)x(x3)2\frac{3 \left(x - 3\right)}{x \left(x - 3\right)^{2}}

    The result is: 3(x3)x(x3)2\frac{3 \left(x - 3\right)}{x \left(x - 3\right)^{2}}

  2. Now simplify:

    3x(x3)\frac{3}{x \left(x - 3\right)}


The answer is:

3x(x3)\frac{3}{x \left(x - 3\right)}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
         /  1        x    \ 
-(x - 3)*|----- - --------| 
         |x - 3          2| 
         \        (x - 3) / 
----------------------------
             x              
(x3)(x(x3)2+1x3)x- \frac{\left(x - 3\right) \left(- \frac{x}{\left(x - 3\right)^{2}} + \frac{1}{x - 3}\right)}{x}
The second derivative [src]
/       x   \ /  1     1   \
|-1 + ------|*|- - - ------|
\     -3 + x/ \  x   -3 + x/
----------------------------
             x              
(xx31)(1x31x)x\frac{\left(\frac{x}{x - 3} - 1\right) \left(- \frac{1}{x - 3} - \frac{1}{x}\right)}{x}
The third derivative [src]
  /       x   \ /1        1           1     \
2*|-1 + ------|*|-- + --------- + ----------|
  \     -3 + x/ | 2           2   x*(-3 + x)|
                \x    (-3 + x)              /
---------------------------------------------
                      x                      
2(xx31)(1(x3)2+1x(x3)+1x2)x\frac{2 \left(\frac{x}{x - 3} - 1\right) \left(\frac{1}{\left(x - 3\right)^{2}} + \frac{1}{x \left(x - 3\right)} + \frac{1}{x^{2}}\right)}{x}