Mister Exam

Other calculators


(1-cos(x))/x^2

Derivative of (1-cos(x))/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - cos(x)
----------
     2    
    x     
$$\frac{1 - \cos{\left(x \right)}}{x^{2}}$$
(1 - cos(x))/x^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
sin(x)   2*(1 - cos(x))
------ - --------------
   2            3      
  x            x       
$$\frac{\sin{\left(x \right)}}{x^{2}} - \frac{2 \left(1 - \cos{\left(x \right)}\right)}{x^{3}}$$
The second derivative [src]
  6*(-1 + cos(x))   4*sin(x)         
- --------------- - -------- + cos(x)
          2            x             
         x                           
-------------------------------------
                   2                 
                  x                  
$$\frac{\cos{\left(x \right)} - \frac{4 \sin{\left(x \right)}}{x} - \frac{6 \left(\cos{\left(x \right)} - 1\right)}{x^{2}}}{x^{2}}$$
The third derivative [src]
          6*cos(x)   18*sin(x)   24*(-1 + cos(x))
-sin(x) - -------- + --------- + ----------------
             x            2              3       
                         x              x        
-------------------------------------------------
                         2                       
                        x                        
$$\frac{- \sin{\left(x \right)} - \frac{6 \cos{\left(x \right)}}{x} + \frac{18 \sin{\left(x \right)}}{x^{2}} + \frac{24 \left(\cos{\left(x \right)} - 1\right)}{x^{3}}}{x^{2}}$$
The graph
Derivative of (1-cos(x))/x^2