Mister Exam

Other calculators


(1-cos4x)/sin4x

Derivative of (1-cos4x)/sin4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 - cos(4*x)
------------
  sin(4*x)  
$$\frac{- \cos{\left(4 x \right)} + 1}{\sin{\left(4 x \right)}}$$
d /1 - cos(4*x)\
--|------------|
dx\  sin(4*x)  /
$$\frac{d}{d x} \frac{- \cos{\left(4 x \right)} + 1}{\sin{\left(4 x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    4*(1 - cos(4*x))*cos(4*x)
4 - -------------------------
               2             
            sin (4*x)        
$$- \frac{4 \cdot \left(- \cos{\left(4 x \right)} + 1\right) \cos{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}} + 4$$
The second derivative [src]
    //         2     \                           \
    ||    2*cos (4*x)|                           |
-16*||1 + -----------|*(-1 + cos(4*x)) + cos(4*x)|
    ||        2      |                           |
    \\     sin (4*x) /                           /
--------------------------------------------------
                     sin(4*x)                     
$$- \frac{16 \left(\left(1 + \frac{2 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \left(\cos{\left(4 x \right)} - 1\right) + \cos{\left(4 x \right)}\right)}{\sin{\left(4 x \right)}}$$
The third derivative [src]
   /                                  /         2     \         \
   |                                  |    6*cos (4*x)|         |
   |                  (-1 + cos(4*x))*|5 + -----------|*cos(4*x)|
   |         2                        |        2      |         |
   |    3*cos (4*x)                   \     sin (4*x) /         |
64*|2 + ----------- + ------------------------------------------|
   |        2                            2                      |
   \     sin (4*x)                    sin (4*x)                 /
$$64 \left(\frac{\left(5 + \frac{6 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right) \left(\cos{\left(4 x \right)} - 1\right) \cos{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}} + 2 + \frac{3 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}\right)$$
The graph
Derivative of (1-cos4x)/sin4x