Mister Exam

Other calculators

Derivative of (1-2cos^2xtgx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2          
1 - 2*cos (x)*tan(x)
$$- 2 \cos^{2}{\left(x \right)} \tan{\left(x \right)} + 1$$
1 - 2*cos(x)^2*tan(x)
Detail solution
  1. Differentiate term by term:

    1. The derivative of the constant is zero.

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the product rule:

          ; to find :

          1. Let .

          2. Apply the power rule: goes to

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of cosine is negative sine:

            The result of the chain rule is:

          ; to find :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. The derivative of sine is cosine:

            To find :

            1. The derivative of cosine is negative sine:

            Now plug in to the quotient rule:

          The result is:

        So, the result is:

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2    /       2   \                         
- 2*cos (x)*\1 + tan (x)/ + 4*cos(x)*sin(x)*tan(x)
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} + 4 \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)}$$
The second derivative [src]
  /   2                2                2    /       2   \            /       2   \              \
4*\cos (x)*tan(x) - sin (x)*tan(x) - cos (x)*\1 + tan (x)/*tan(x) + 2*\1 + tan (x)/*cos(x)*sin(x)/
$$4 \left(2 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} - \left(\tan^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} \tan{\left(x \right)} - \sin^{2}{\left(x \right)} \tan{\left(x \right)} + \cos^{2}{\left(x \right)} \tan{\left(x \right)}\right)$$
The third derivative [src]
  /               2                                                                                                                                                              \
  |  /       2   \     2           2    /       2   \        2    /       2   \                                 2       2    /       2   \     /       2   \                     |
4*\- \1 + tan (x)/ *cos (x) - 3*sin (x)*\1 + tan (x)/ + 3*cos (x)*\1 + tan (x)/ - 4*cos(x)*sin(x)*tan(x) - 2*cos (x)*tan (x)*\1 + tan (x)/ + 6*\1 + tan (x)/*cos(x)*sin(x)*tan(x)/
$$4 \left(- \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cos^{2}{\left(x \right)} - 3 \left(\tan^{2}{\left(x \right)} + 1\right) \sin^{2}{\left(x \right)} + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)} - 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)} + 3 \left(\tan^{2}{\left(x \right)} + 1\right) \cos^{2}{\left(x \right)} - 4 \sin{\left(x \right)} \cos{\left(x \right)} \tan{\left(x \right)}\right)$$