Mister Exam

Other calculators

Derivative of 1/(x^2+3x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
 2          
x  + 3*x + 2
$$\frac{1}{\left(x^{2} + 3 x\right) + 2}$$
1/(x^2 + 3*x + 2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    -3 - 2*x   
---------------
              2
/ 2          \ 
\x  + 3*x + 2/ 
$$\frac{- 2 x - 3}{\left(\left(x^{2} + 3 x\right) + 2\right)^{2}}$$
The second derivative [src]
  /               2 \
  |      (3 + 2*x)  |
2*|-1 + ------------|
  |          2      |
  \     2 + x  + 3*x/
---------------------
                 2   
   /     2      \    
   \2 + x  + 3*x/    
$$\frac{2 \left(\frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} - 1\right)}{\left(x^{2} + 3 x + 2\right)^{2}}$$
4-я производная [src]
   /                4                2\
   |       (3 + 2*x)      3*(3 + 2*x) |
24*|1 + --------------- - ------------|
   |                  2        2      |
   |    /     2      \    2 + x  + 3*x|
   \    \2 + x  + 3*x/                /
---------------------------------------
                          3            
            /     2      \             
            \2 + x  + 3*x/             
$$\frac{24 \left(\frac{\left(2 x + 3\right)^{4}}{\left(x^{2} + 3 x + 2\right)^{2}} - \frac{3 \left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} + 1\right)}{\left(x^{2} + 3 x + 2\right)^{3}}$$
The third derivative [src]
  /              2 \          
  |     (3 + 2*x)  |          
6*|2 - ------------|*(3 + 2*x)
  |         2      |          
  \    2 + x  + 3*x/          
------------------------------
                     3        
       /     2      \         
       \2 + x  + 3*x/         
$$\frac{6 \left(2 x + 3\right) \left(- \frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} + 2\right)}{\left(x^{2} + 3 x + 2\right)^{3}}$$