1 1*------------ 2 x - 3*x + 2
d / 1 \ --|1*------------| dx| 2 | \ x - 3*x + 2/
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The answer is:
3 - 2*x --------------- 2 / 2 \ \x - 3*x + 2/
/ 2 \ | (-3 + 2*x) | 2*|-1 + ------------| | 2 | \ 2 + x - 3*x/ --------------------- 2 / 2 \ \2 + x - 3*x/
/ 2 \ | (-3 + 2*x) | -6*(-3 + 2*x)*|-2 + ------------| | 2 | \ 2 + x - 3*x/ --------------------------------- 3 / 2 \ \2 + x - 3*x/