Mister Exam

Other calculators


1/(x^2-1)^7

Derivative of 1/(x^2-1)^7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
        7
/ 2    \ 
\x  - 1/ 
1(x21)7\frac{1}{\left(x^{2} - 1\right)^{7}}
1/((x^2 - 1)^7)
Detail solution
  1. Let u=(x21)7u = \left(x^{2} - 1\right)^{7}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddx(x21)7\frac{d}{d x} \left(x^{2} - 1\right)^{7}:

    1. Let u=x21u = x^{2} - 1.

    2. Apply the power rule: u7u^{7} goes to 7u67 u^{6}

    3. Then, apply the chain rule. Multiply by ddx(x21)\frac{d}{d x} \left(x^{2} - 1\right):

      1. Differentiate x21x^{2} - 1 term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of the constant 1-1 is zero.

        The result is: 2x2 x

      The result of the chain rule is:

      14x(x21)614 x \left(x^{2} - 1\right)^{6}

    The result of the chain rule is:

    14x(x21)8- \frac{14 x}{\left(x^{2} - 1\right)^{8}}

  4. Now simplify:

    14x(x21)8- \frac{14 x}{\left(x^{2} - 1\right)^{8}}


The answer is:

14x(x21)8- \frac{14 x}{\left(x^{2} - 1\right)^{8}}

The graph
02468-8-6-4-2-1010-5000000050000000
The first derivative [src]
      -14*x       
------------------
                 7
/ 2    \ / 2    \ 
\x  - 1/*\x  - 1/ 
14x(x21)(x21)7- \frac{14 x}{\left(x^{2} - 1\right) \left(x^{2} - 1\right)^{7}}
The second derivative [src]
   /          2 \
   |      16*x  |
14*|-1 + -------|
   |           2|
   \     -1 + x /
-----------------
             8   
    /      2\    
    \-1 + x /    
14(16x2x211)(x21)8\frac{14 \left(\frac{16 x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right)^{8}}
The third derivative [src]
      /         2 \
      |      6*x  |
672*x*|1 - -------|
      |          2|
      \    -1 + x /
-------------------
              9    
     /      2\     
     \-1 + x /     
672x(6x2x21+1)(x21)9\frac{672 x \left(- \frac{6 x^{2}}{x^{2} - 1} + 1\right)}{\left(x^{2} - 1\right)^{9}}
The graph
Derivative of 1/(x^2-1)^7