Mister Exam

Other calculators

Derivative of 1/(x^2-2x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
 2          
x  - 2*x + 3
$$\frac{1}{\left(x^{2} - 2 x\right) + 3}$$
1/(x^2 - 2*x + 3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    2 - 2*x    
---------------
              2
/ 2          \ 
\x  - 2*x + 3/ 
$$\frac{2 - 2 x}{\left(\left(x^{2} - 2 x\right) + 3\right)^{2}}$$
The second derivative [src]
  /               2 \
  |     4*(-1 + x)  |
2*|-1 + ------------|
  |          2      |
  \     3 + x  - 2*x/
---------------------
                 2   
   /     2      \    
   \3 + x  - 2*x/    
$$\frac{2 \left(\frac{4 \left(x - 1\right)^{2}}{x^{2} - 2 x + 3} - 1\right)}{\left(x^{2} - 2 x + 3\right)^{2}}$$
The third derivative [src]
   /              2 \         
   |    2*(-1 + x)  |         
24*|1 - ------------|*(-1 + x)
   |         2      |         
   \    3 + x  - 2*x/         
------------------------------
                     3        
       /     2      \         
       \3 + x  - 2*x/         
$$\frac{24 \left(x - 1\right) \left(- \frac{2 \left(x - 1\right)^{2}}{x^{2} - 2 x + 3} + 1\right)}{\left(x^{2} - 2 x + 3\right)^{3}}$$