Mister Exam

Other calculators

Derivative of 1/x+2ln(x)-(ln(x)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1              log(x)
- + 2*log(x) - ------
x                x   
(2log(x)+1x)log(x)x\left(2 \log{\left(x \right)} + \frac{1}{x}\right) - \frac{\log{\left(x \right)}}{x}
1/x + 2*log(x) - log(x)/x
Detail solution
  1. Differentiate (2log(x)+1x)log(x)x\left(2 \log{\left(x \right)} + \frac{1}{x}\right) - \frac{\log{\left(x \right)}}{x} term by term:

    1. Differentiate 2log(x)+1x2 \log{\left(x \right)} + \frac{1}{x} term by term:

      1. Apply the power rule: 1x\frac{1}{x} goes to 1x2- \frac{1}{x^{2}}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        So, the result is: 2x\frac{2}{x}

      The result is: 2x1x2\frac{2}{x} - \frac{1}{x^{2}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=log(x)f{\left(x \right)} = \log{\left(x \right)} and g(x)=xg{\left(x \right)} = x.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Apply the power rule: xx goes to 11

        Now plug in to the quotient rule:

        1log(x)x2\frac{1 - \log{\left(x \right)}}{x^{2}}

      So, the result is: 1log(x)x2- \frac{1 - \log{\left(x \right)}}{x^{2}}

    The result is: 2x1log(x)x21x2\frac{2}{x} - \frac{1 - \log{\left(x \right)}}{x^{2}} - \frac{1}{x^{2}}

  2. Now simplify:

    2x+log(x)2x2\frac{2 x + \log{\left(x \right)} - 2}{x^{2}}


The answer is:

2x+log(x)2x2\frac{2 x + \log{\left(x \right)} - 2}{x^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  2    2   log(x)
- -- + - + ------
   2   x      2  
  x          x   
2x+log(x)x22x2\frac{2}{x} + \frac{\log{\left(x \right)}}{x^{2}} - \frac{2}{x^{2}}
The second derivative [src]
     5   2*log(x)
-2 + - - --------
     x      x    
-----------------
         2       
        x        
22log(x)x+5xx2\frac{-2 - \frac{2 \log{\left(x \right)}}{x} + \frac{5}{x}}{x^{2}}
The third derivative [src]
    17   6*log(x)
4 - -- + --------
    x       x    
-----------------
         3       
        x        
4+6log(x)x17xx3\frac{4 + \frac{6 \log{\left(x \right)}}{x} - \frac{17}{x}}{x^{3}}