Mister Exam

Other calculators


1/sqrt(x^2+1)

Derivative of 1/sqrt(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1     
-----------
   ________
  /  2     
\/  x  + 1 
1x2+1\frac{1}{\sqrt{x^{2} + 1}}
1/(sqrt(x^2 + 1))
Detail solution
  1. Let u=x2+1u = \sqrt{x^{2} + 1}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddxx2+1\frac{d}{d x} \sqrt{x^{2} + 1}:

    1. Let u=x2+1u = x^{2} + 1.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(x2+1)\frac{d}{d x} \left(x^{2} + 1\right):

      1. Differentiate x2+1x^{2} + 1 term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of the constant 11 is zero.

        The result is: 2x2 x

      The result of the chain rule is:

      xx2+1\frac{x}{\sqrt{x^{2} + 1}}

    The result of the chain rule is:

    x(x2+1)32- \frac{x}{\left(x^{2} + 1\right)^{\frac{3}{2}}}

  4. Now simplify:

    x(x2+1)32- \frac{x}{\left(x^{2} + 1\right)^{\frac{3}{2}}}


The answer is:

x(x2+1)32- \frac{x}{\left(x^{2} + 1\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
        -x          
--------------------
            ________
/ 2    \   /  2     
\x  + 1/*\/  x  + 1 
xx2+1(x2+1)- \frac{x}{\sqrt{x^{2} + 1} \left(x^{2} + 1\right)}
The second derivative [src]
         2 
      3*x  
-1 + ------
          2
     1 + x 
-----------
        3/2
/     2\   
\1 + x /   
3x2x2+11(x2+1)32\frac{\frac{3 x^{2}}{x^{2} + 1} - 1}{\left(x^{2} + 1\right)^{\frac{3}{2}}}
The third derivative [src]
    /        2 \
    |     5*x  |
3*x*|3 - ------|
    |         2|
    \    1 + x /
----------------
          5/2   
  /     2\      
  \1 + x /      
3x(5x2x2+1+3)(x2+1)52\frac{3 x \left(- \frac{5 x^{2}}{x^{2} + 1} + 3\right)}{\left(x^{2} + 1\right)^{\frac{5}{2}}}
The graph
Derivative of 1/sqrt(x^2+1)