Mister Exam

Other calculators


1/sqrt(x^2+1)

Derivative of 1/sqrt(x^2+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1     
-----------
   ________
  /  2     
\/  x  + 1 
$$\frac{1}{\sqrt{x^{2} + 1}}$$
1/(sqrt(x^2 + 1))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        -x          
--------------------
            ________
/ 2    \   /  2     
\x  + 1/*\/  x  + 1 
$$- \frac{x}{\sqrt{x^{2} + 1} \left(x^{2} + 1\right)}$$
The second derivative [src]
         2 
      3*x  
-1 + ------
          2
     1 + x 
-----------
        3/2
/     2\   
\1 + x /   
$$\frac{\frac{3 x^{2}}{x^{2} + 1} - 1}{\left(x^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
    /        2 \
    |     5*x  |
3*x*|3 - ------|
    |         2|
    \    1 + x /
----------------
          5/2   
  /     2\      
  \1 + x /      
$$\frac{3 x \left(- \frac{5 x^{2}}{x^{2} + 1} + 3\right)}{\left(x^{2} + 1\right)^{\frac{5}{2}}}$$
The graph
Derivative of 1/sqrt(x^2+1)