Mister Exam

Other calculators

Derivative of (1/sqrt(x)+2)*tg(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/  1      \       
|----- + 2|*tan(x)
|  ___    |       
\\/ x     /       
$$\left(2 + \frac{1}{\sqrt{x}}\right) \tan{\left(x \right)}$$
(1/(sqrt(x)) + 2)*tan(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      ; to find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2   \ /  1      \   tan(x)
\1 + tan (x)/*|----- + 2| - ------
              |  ___    |      3/2
              \\/ x     /   2*x   
$$\left(2 + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) - \frac{\tan{\left(x \right)}}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
         2                                                   
  1 + tan (x)   3*tan(x)     /       2   \ /      1  \       
- ----------- + -------- + 2*\1 + tan (x)/*|2 + -----|*tan(x)
       3/2          5/2                    |      ___|       
      x          4*x                       \    \/ x /       
$$2 \left(2 + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} - \frac{\tan^{2}{\left(x \right)} + 1}{x^{\frac{3}{2}}} + \frac{3 \tan{\left(x \right)}}{4 x^{\frac{5}{2}}}$$
The third derivative [src]
                /       2   \     /       2   \                                                     
  15*tan(x)   9*\1 + tan (x)/   3*\1 + tan (x)/*tan(x)     /       2   \ /         2   \ /      1  \
- --------- + --------------- - ---------------------- + 2*\1 + tan (x)/*\1 + 3*tan (x)/*|2 + -----|
       7/2            5/2                 3/2                                            |      ___|
    8*x            4*x                   x                                               \    \/ x /
$$2 \left(2 + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{x^{\frac{3}{2}}} + \frac{9 \left(\tan^{2}{\left(x \right)} + 1\right)}{4 x^{\frac{5}{2}}} - \frac{15 \tan{\left(x \right)}}{8 x^{\frac{7}{2}}}$$