Mister Exam

Other calculators

Derivative of ((1/sqrtx)+2)*tg3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/  1      \         
|----- + 2|*tan(3*x)
|  ___    |         
\\/ x     /         
$$\left(2 + \frac{1}{\sqrt{x}}\right) \tan{\left(3 x \right)}$$
(1/(sqrt(x)) + 2)*tan(3*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      ; to find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        To find :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        Now plug in to the quotient rule:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/         2     \ /  1      \   tan(3*x)
\3 + 3*tan (3*x)/*|----- + 2| - --------
                  |  ___    |       3/2 
                  \\/ x     /    2*x    
$$\left(2 + \frac{1}{\sqrt{x}}\right) \left(3 \tan^{2}{\left(3 x \right)} + 3\right) - \frac{\tan{\left(3 x \right)}}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
  /         2                                                         \
  |  1 + tan (3*x)   tan(3*x)     /       2     \ /      1  \         |
3*|- ------------- + -------- + 6*\1 + tan (3*x)/*|2 + -----|*tan(3*x)|
  |        3/2           5/2                      |      ___|         |
  \       x           4*x                         \    \/ x /         /
$$3 \left(6 \left(2 + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)} - \frac{\tan^{2}{\left(3 x \right)} + 1}{x^{\frac{3}{2}}} + \frac{\tan{\left(3 x \right)}}{4 x^{\frac{5}{2}}}\right)$$
The third derivative [src]
  /                 /       2     \     /       2     \                                                            \
  |  5*tan(3*x)   9*\1 + tan (3*x)/   9*\1 + tan (3*x)/*tan(3*x)      /       2     \ /         2     \ /      1  \|
3*|- ---------- + ----------------- - -------------------------- + 18*\1 + tan (3*x)/*\1 + 3*tan (3*x)/*|2 + -----||
  |       7/2              5/2                    3/2                                                   |      ___||
  \    8*x              4*x                      x                                                      \    \/ x //
$$3 \left(18 \left(2 + \frac{1}{\sqrt{x}}\right) \left(\tan^{2}{\left(3 x \right)} + 1\right) \left(3 \tan^{2}{\left(3 x \right)} + 1\right) - \frac{9 \left(\tan^{2}{\left(3 x \right)} + 1\right) \tan{\left(3 x \right)}}{x^{\frac{3}{2}}} + \frac{9 \left(\tan^{2}{\left(3 x \right)} + 1\right)}{4 x^{\frac{5}{2}}} - \frac{5 \tan{\left(3 x \right)}}{8 x^{\frac{7}{2}}}\right)$$