1
1*-------------------
_______ _____
\/ x + 2 - \/ 2*x
d / 1 \ --|1*-------------------| dx| _______ _____| \ \/ x + 2 - \/ 2*x /
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
___
1 \/ 2
- ----------- + -------
_______ ___
2*\/ x + 2 2*\/ x
-----------------------
2
/ _______ _____\
\\/ x + 2 - \/ 2*x /
/ 2 \
| / ___\ |
| | 1 \/ 2 | |
| 2*|--------- - -----| |
| ___ | _______ ___| |
| 1 \/ 2 \\/ 2 + x \/ x / |
-|- ---------- + ----- + -------------------------|
| 3/2 3/2 _______ ___ ___|
\ (2 + x) x - \/ 2 + x + \/ 2 *\/ x /
----------------------------------------------------
2
/ _______ ___ ___\
4*\- \/ 2 + x + \/ 2 *\/ x /
/ 3 \
| / ___\ / ___\ / ___\|
| | 1 \/ 2 | | 1 \/ 2 | | 1 \/ 2 ||
| 2*|--------- - -----| 2*|---------- - -----|*|--------- - -----||
| ___ | _______ ___| | 3/2 3/2| | _______ ___||
| 1 \/ 2 \\/ 2 + x \/ x / \(2 + x) x / \\/ 2 + x \/ x /|
3*|- ---------- + ----- - ---------------------------- + ------------------------------------------|
| 5/2 5/2 2 _______ ___ ___ |
| (2 + x) x / _______ ___ ___\ - \/ 2 + x + \/ 2 *\/ x |
\ \- \/ 2 + x + \/ 2 *\/ x / /
----------------------------------------------------------------------------------------------------
2
/ _______ ___ ___\
8*\- \/ 2 + x + \/ 2 *\/ x /