Mister Exam

Other calculators


(1/(sqrt(x+2)-sqrt(2x)))

Derivative of (1/(sqrt(x+2)-sqrt(2x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           1         
1*-------------------
    _______     _____
  \/ x + 2  - \/ 2*x 
$$1 \cdot \frac{1}{- \sqrt{2 x} + \sqrt{x + 2}}$$
d /           1         \
--|1*-------------------|
dx|    _______     _____|
  \  \/ x + 2  - \/ 2*x /
$$\frac{d}{d x} 1 \cdot \frac{1}{- \sqrt{2 x} + \sqrt{x + 2}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                   ___ 
       1         \/ 2  
- ----------- + -------
      _______       ___
  2*\/ x + 2    2*\/ x 
-----------------------
                      2
 /  _______     _____\ 
 \\/ x + 2  - \/ 2*x / 
$$\frac{- \frac{1}{2 \sqrt{x + 2}} + \frac{\sqrt{2}}{2 \sqrt{x}}}{\left(- \sqrt{2 x} + \sqrt{x + 2}\right)^{2}}$$
The second derivative [src]
 /                                              2 \ 
 |                           /              ___\  | 
 |                           |    1       \/ 2 |  | 
 |                         2*|--------- - -----|  | 
 |                 ___       |  _______     ___|  | 
 |      1        \/ 2        \\/ 2 + x    \/ x /  | 
-|- ---------- + ----- + -------------------------| 
 |         3/2     3/2       _______     ___   ___| 
 \  (2 + x)       x      - \/ 2 + x  + \/ 2 *\/ x / 
----------------------------------------------------
                                        2           
             /    _______     ___   ___\            
           4*\- \/ 2 + x  + \/ 2 *\/ x /            
$$- \frac{\frac{2 \left(\frac{1}{\sqrt{x + 2}} - \frac{\sqrt{2}}{\sqrt{x}}\right)^{2}}{\sqrt{2} \sqrt{x} - \sqrt{x + 2}} - \frac{1}{\left(x + 2\right)^{\frac{3}{2}}} + \frac{\sqrt{2}}{x^{\frac{3}{2}}}}{4 \left(\sqrt{2} \sqrt{x} - \sqrt{x + 2}\right)^{2}}$$
The third derivative [src]
  /                                               3                                                \
  |                            /              ___\         /               ___\ /              ___\|
  |                            |    1       \/ 2 |         |    1        \/ 2 | |    1       \/ 2 ||
  |                          2*|--------- - -----|       2*|---------- - -----|*|--------- - -----||
  |                 ___        |  _______     ___|         |       3/2     3/2| |  _______     ___||
  |      1        \/ 2         \\/ 2 + x    \/ x /         \(2 + x)       x   / \\/ 2 + x    \/ x /|
3*|- ---------- + ----- - ---------------------------- + ------------------------------------------|
  |         5/2     5/2                              2               _______     ___   ___         |
  |  (2 + x)       x      /    _______     ___   ___\            - \/ 2 + x  + \/ 2 *\/ x          |
  \                       \- \/ 2 + x  + \/ 2 *\/ x /                                              /
----------------------------------------------------------------------------------------------------
                                                                2                                   
                                     /    _______     ___   ___\                                    
                                   8*\- \/ 2 + x  + \/ 2 *\/ x /                                    
$$\frac{3 \cdot \left(\frac{2 \left(\frac{1}{\left(x + 2\right)^{\frac{3}{2}}} - \frac{\sqrt{2}}{x^{\frac{3}{2}}}\right) \left(\frac{1}{\sqrt{x + 2}} - \frac{\sqrt{2}}{\sqrt{x}}\right)}{\sqrt{2} \sqrt{x} - \sqrt{x + 2}} - \frac{2 \left(\frac{1}{\sqrt{x + 2}} - \frac{\sqrt{2}}{\sqrt{x}}\right)^{3}}{\left(\sqrt{2} \sqrt{x} - \sqrt{x + 2}\right)^{2}} - \frac{1}{\left(x + 2\right)^{\frac{5}{2}}} + \frac{\sqrt{2}}{x^{\frac{5}{2}}}\right)}{8 \left(\sqrt{2} \sqrt{x} - \sqrt{x + 2}\right)^{2}}$$
The graph
Derivative of (1/(sqrt(x+2)-sqrt(2x)))