1 ------------------ ___ \/ x - log(x + 1)
1/(sqrt(x) - log(x + 1))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1
----- - -------
x + 1 ___
2*\/ x
---------------------
2
/ ___ \
\\/ x - log(x + 1)/
2
/ 1 2 \
|- ----- + -----|
| ___ 1 + x|
1 1 \ \/ x /
- -------- + ------ + ----------------------
2 3/2 / ___ \
(1 + x) 4*x 2*\\/ x - log(1 + x)/
--------------------------------------------
2
/ ___ \
\\/ x - log(1 + x)/
3
/ 1 2 \ / 1 4 \ / 1 2 \
3*|- ----- + -----| 3*|- ---- + --------|*|- ----- + -----|
| ___ 1 + x| | 3/2 2| | ___ 1 + x|
2 3 \ \/ x / \ x (1 + x) / \ \/ x /
-------- - ------ + ----------------------- - ---------------------------------------
3 5/2 2 / ___ \
(1 + x) 8*x / ___ \ 4*\\/ x - log(1 + x)/
4*\\/ x - log(1 + x)/
-------------------------------------------------------------------------------------
2
/ ___ \
\\/ x - log(1 + x)/