Mister Exam

Other calculators

Derivative of 1/(sqrt(x)-ln(x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1         
------------------
  ___             
\/ x  - log(x + 1)
$$\frac{1}{\sqrt{x} - \log{\left(x + 1 \right)}}$$
1/(sqrt(x) - log(x + 1))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of is .

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. The derivative of the constant is zero.

            The result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     1        1      
   ----- - -------   
   x + 1       ___   
           2*\/ x    
---------------------
                    2
/  ___             \ 
\\/ x  - log(x + 1)/ 
$$\frac{\frac{1}{x + 1} - \frac{1}{2 \sqrt{x}}}{\left(\sqrt{x} - \log{\left(x + 1 \right)}\right)^{2}}$$
The second derivative [src]
                                         2  
                        /    1       2  \   
                        |- ----- + -----|   
                        |    ___   1 + x|   
     1         1        \  \/ x         /   
- -------- + ------ + ----------------------
         2      3/2     /  ___             \
  (1 + x)    4*x      2*\\/ x  - log(1 + x)/
--------------------------------------------
                               2            
           /  ___             \             
           \\/ x  - log(1 + x)/             
$$\frac{- \frac{1}{\left(x + 1\right)^{2}} + \frac{\left(\frac{2}{x + 1} - \frac{1}{\sqrt{x}}\right)^{2}}{2 \left(\sqrt{x} - \log{\left(x + 1 \right)}\right)} + \frac{1}{4 x^{\frac{3}{2}}}}{\left(\sqrt{x} - \log{\left(x + 1 \right)}\right)^{2}}$$
The third derivative [src]
                                         3                                           
                        /    1       2  \       /   1        4    \ /    1       2  \
                      3*|- ----- + -----|     3*|- ---- + --------|*|- ----- + -----|
                        |    ___   1 + x|       |   3/2          2| |    ___   1 + x|
   2         3          \  \/ x         /       \  x      (1 + x) / \  \/ x         /
-------- - ------ + ----------------------- - ---------------------------------------
       3      5/2                         2              /  ___             \        
(1 + x)    8*x        /  ___             \             4*\\/ x  - log(1 + x)/        
                    4*\\/ x  - log(1 + x)/                                           
-------------------------------------------------------------------------------------
                                                    2                                
                                /  ___             \                                 
                                \\/ x  - log(1 + x)/                                 
$$\frac{\frac{2}{\left(x + 1\right)^{3}} - \frac{3 \left(\frac{4}{\left(x + 1\right)^{2}} - \frac{1}{x^{\frac{3}{2}}}\right) \left(\frac{2}{x + 1} - \frac{1}{\sqrt{x}}\right)}{4 \left(\sqrt{x} - \log{\left(x + 1 \right)}\right)} + \frac{3 \left(\frac{2}{x + 1} - \frac{1}{\sqrt{x}}\right)^{3}}{4 \left(\sqrt{x} - \log{\left(x + 1 \right)}\right)^{2}} - \frac{3}{8 x^{\frac{5}{2}}}}{\left(\sqrt{x} - \log{\left(x + 1 \right)}\right)^{2}}$$