Mister Exam

Other calculators


1/(sin^35x)

Derivative of 1/(sin^35x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1    
1*--------
     35   
  sin  (x)
$$1 \cdot \frac{1}{\sin^{35}{\left(x \right)}}$$
d /     1    \
--|1*--------|
dx|     35   |
  \  sin  (x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{\sin^{35}{\left(x \right)}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
   -35*cos(x)  
---------------
          35   
sin(x)*sin  (x)
$$- \frac{35 \cos{\left(x \right)}}{\sin{\left(x \right)} \sin^{35}{\left(x \right)}}$$
The second derivative [src]
   /          2   \
   |    36*cos (x)|
35*|1 + ----------|
   |        2     |
   \     sin (x)  /
-------------------
         35        
      sin  (x)     
$$\frac{35 \cdot \left(1 + \frac{36 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)}{\sin^{35}{\left(x \right)}}$$
The third derivative [src]
    /              2   \       
    |      1332*cos (x)|       
-35*|107 + ------------|*cos(x)
    |           2      |       
    \        sin (x)   /       
-------------------------------
               36              
            sin  (x)           
$$- \frac{35 \cdot \left(107 + \frac{1332 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin^{36}{\left(x \right)}}$$
The graph
Derivative of 1/(sin^35x)