1 1*-------- 35 sin (x)
d / 1 \ --|1*--------| dx| 35 | \ sin (x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
The answer is:
-35*cos(x) --------------- 35 sin(x)*sin (x)
/ 2 \ | 36*cos (x)| 35*|1 + ----------| | 2 | \ sin (x) / ------------------- 35 sin (x)
/ 2 \ | 1332*cos (x)| -35*|107 + ------------|*cos(x) | 2 | \ sin (x) / ------------------------------- 36 sin (x)