1
1*--------
35
sin (x)
d / 1 \ --|1*--------| dx| 35 | \ sin (x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
The answer is:
-35*cos(x)
---------------
35
sin(x)*sin (x)
/ 2 \
| 36*cos (x)|
35*|1 + ----------|
| 2 |
\ sin (x) /
-------------------
35
sin (x)
/ 2 \
| 1332*cos (x)|
-35*|107 + ------------|*cos(x)
| 2 |
\ sin (x) /
-------------------------------
36
sin (x)