Mister Exam

Other calculators

Derivative of 1/(1+exp(-a*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
     -a*x
1 + e    
$$\frac{1}{e^{- a x} + 1}$$
1/(1 + exp((-a)*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. The derivative of is itself.

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
     -a*x   
  a*e       
------------
           2
/     -a*x\ 
\1 + e    / 
$$\frac{a e^{- a x}}{\left(e^{- a x} + 1\right)^{2}}$$
The second derivative [src]
   /         -a*x \      
 2 |      2*e     |  -a*x
a *|-1 + ---------|*e    
   |          -a*x|      
   \     1 + e    /      
-------------------------
                  2      
       /     -a*x\       
       \1 + e    /       
$$\frac{a^{2} \left(-1 + \frac{2 e^{- a x}}{1 + e^{- a x}}\right) e^{- a x}}{\left(1 + e^{- a x}\right)^{2}}$$
The third derivative [src]
   /        -a*x        -2*a*x  \      
 3 |     6*e         6*e        |  -a*x
a *|1 - --------- + ------------|*e    
   |         -a*x              2|      
   |    1 + e       /     -a*x\ |      
   \                \1 + e    / /      
---------------------------------------
                         2             
              /     -a*x\              
              \1 + e    /              
$$\frac{a^{3} \left(1 - \frac{6 e^{- a x}}{1 + e^{- a x}} + \frac{6 e^{- 2 a x}}{\left(1 + e^{- a x}\right)^{2}}\right) e^{- a x}}{\left(1 + e^{- a x}\right)^{2}}$$