Mister Exam

Other calculators

Derivative of 1/(ln(2-x/3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1     
----------
   /    x\
log|2 - -|
   \    3/
$$\frac{1}{\log{\left(- \frac{x}{3} + 2 \right)}}$$
1/log(2 - x/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          1          
---------------------
  /    x\    2/    x\
3*|2 - -|*log |2 - -|
  \    3/     \    3/
$$\frac{1}{3 \left(- \frac{x}{3} + 2\right) \log{\left(- \frac{x}{3} + 2 \right)}^{2}}$$
The second derivative [src]
            2        
    1 + ----------   
           /    x\   
        log|2 - -|   
           \    3/   
---------------------
        2    2/    x\
(-6 + x) *log |2 - -|
              \    3/
$$\frac{1 + \frac{2}{\log{\left(2 - \frac{x}{3} \right)}}}{\left(x - 6\right)^{2} \log{\left(2 - \frac{x}{3} \right)}^{2}}$$
The third derivative [src]
   /        3             3     \
-2*|1 + ---------- + -----------|
   |       /    x\      2/    x\|
   |    log|2 - -|   log |2 - -||
   \       \    3/       \    3//
---------------------------------
              3    2/    x\      
      (-6 + x) *log |2 - -|      
                    \    3/      
$$- \frac{2 \left(1 + \frac{3}{\log{\left(2 - \frac{x}{3} \right)}} + \frac{3}{\log{\left(2 - \frac{x}{3} \right)}^{2}}\right)}{\left(x - 6\right)^{3} \log{\left(2 - \frac{x}{3} \right)}^{2}}$$