Mister Exam

Other calculators

Derivative of 1/(exp(1/x)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1   
------
 1    
 -    
 x    
e  - 1
$$\frac{1}{e^{\frac{1}{x}} - 1}$$
1/(exp(1/x) - 1)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      4. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      1     
      -     
      x     
     e      
------------
           2
   / 1    \ 
   | -    | 
 2 | x    | 
x *\e  - 1/ 
$$\frac{e^{\frac{1}{x}}}{x^{2} \left(e^{\frac{1}{x}} - 1\right)^{2}}$$
The second derivative [src]
/                1   \   
|                -   |  1
|                x   |  -
|     1       2*e    |  x
|-2 - - + -----------|*e 
|     x     /      1\|   
|           |      -||   
|           |      x||   
\         x*\-1 + e //   
-------------------------
                  2      
         /      1\       
         |      -|       
       3 |      x|       
      x *\-1 + e /       
$$\frac{\left(-2 - \frac{1}{x} + \frac{2 e^{\frac{1}{x}}}{x \left(e^{\frac{1}{x}} - 1\right)}\right) e^{\frac{1}{x}}}{x^{3} \left(e^{\frac{1}{x}} - 1\right)^{2}}$$
The third derivative [src]
/                    1             1               2    \   
|                    -             -               -    |  1
|                    x             x               x    |  -
|    1    6      12*e           6*e             6*e     |  x
|6 + -- + - - ----------- - ------------ + -------------|*e 
|     2   x     /      1\      /      1\               2|   
|    x          |      -|      |      -|      /      1\ |   
|               |      x|    2 |      x|      |      -| |   
|             x*\-1 + e /   x *\-1 + e /    2 |      x| |   
\                                          x *\-1 + e / /   
------------------------------------------------------------
                                   2                        
                          /      1\                         
                          |      -|                         
                        4 |      x|                         
                       x *\-1 + e /                         
$$\frac{\left(6 + \frac{6}{x} - \frac{12 e^{\frac{1}{x}}}{x \left(e^{\frac{1}{x}} - 1\right)} + \frac{1}{x^{2}} - \frac{6 e^{\frac{1}{x}}}{x^{2} \left(e^{\frac{1}{x}} - 1\right)} + \frac{6 e^{\frac{2}{x}}}{x^{2} \left(e^{\frac{1}{x}} - 1\right)^{2}}\right) e^{\frac{1}{x}}}{x^{4} \left(e^{\frac{1}{x}} - 1\right)^{2}}$$