Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1
-
x
e
------------
2
/ 1 \
| - |
2 | x |
x *\e - 1/
/ 1 \
| - | 1
| x | -
| 1 2*e | x
|-2 - - + -----------|*e
| x / 1\|
| | -||
| | x||
\ x*\-1 + e //
-------------------------
2
/ 1\
| -|
3 | x|
x *\-1 + e /
/ 1 1 2 \
| - - - | 1
| x x x | -
| 1 6 12*e 6*e 6*e | x
|6 + -- + - - ----------- - ------------ + -------------|*e
| 2 x / 1\ / 1\ 2|
| x | -| | -| / 1\ |
| | x| 2 | x| | -| |
| x*\-1 + e / x *\-1 + e / 2 | x| |
\ x *\-1 + e / /
------------------------------------------------------------
2
/ 1\
| -|
4 | x|
x *\-1 + e /