1 --------- x E *sin(x)
1/(E^x*sin(x))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the product rule:
; to find :
The derivative of is itself.
; to find :
The derivative of sine is cosine:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-x
e / x x \ -x
------*\- cos(x)*e - e *sin(x)/*e
sin(x)
------------------------------------
sin(x)
/ / cos(x)\ (cos(x) + sin(x))*cos(x) \ -x
|-cos(x) + |1 + ------|*(cos(x) + sin(x)) + ------------------------ + sin(x)|*e
\ \ sin(x)/ sin(x) /
----------------------------------------------------------------------------------
2
sin (x)
/ / 2 \ \
| | cos (x) cos(x)| |
| / cos(x)\ 2*(cos(x) + sin(x))*|1 + ------- + ------| / cos(x)\ / cos(x)\ |
| 2 |1 + ------|*(cos(x) + sin(x)) 2 | 2 sin(x)| 2*|1 + ------|*cos(x) |1 + ------|*(cos(x) + sin(x))*cos(x)|
| 3*(cos(x) + sin(x)) 4*cos(x) 6*cos (x) \ sin(x)/ 4*(cos(x) + sin(x))*cos(x) 3*cos (x)*(cos(x) + sin(x)) \ sin (x) / \ sin(x)/ \ sin(x)/ | -x
|2 - ------------------- + -------- + --------- - ------------------------------ - -------------------------- - --------------------------- - ------------------------------------------ + --------------------- - -------------------------------------|*e
| sin(x) sin(x) 2 sin(x) 2 3 sin(x) sin(x) 2 |
\ sin (x) sin (x) sin (x) sin (x) /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
sin(x)