Mister Exam

Other calculators

Derivative of 1/(e^x*sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    1    
---------
 x       
E *sin(x)
$$\frac{1}{e^{x} \sin{\left(x \right)}}$$
1/(E^x*sin(x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the product rule:

      ; to find :

      1. The derivative of is itself.

      ; to find :

      1. The derivative of sine is cosine:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  -x                                
 e     /          x    x       \  -x
------*\- cos(x)*e  - e *sin(x)/*e  
sin(x)                              
------------------------------------
               sin(x)               
$$\frac{\frac{e^{- x}}{\sin{\left(x \right)}} \left(- e^{x} \sin{\left(x \right)} - e^{x} \cos{\left(x \right)}\right) e^{- x}}{\sin{\left(x \right)}}$$
The second derivative [src]
/          /    cos(x)\                     (cos(x) + sin(x))*cos(x)         \  -x
|-cos(x) + |1 + ------|*(cos(x) + sin(x)) + ------------------------ + sin(x)|*e  
\          \    sin(x)/                              sin(x)                  /    
----------------------------------------------------------------------------------
                                        2                                         
                                     sin (x)                                      
$$\frac{\left(\left(1 + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) + \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + \sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{- x}}{\sin^{2}{\left(x \right)}}$$
The third derivative [src]
/                                                                                                                                                                 /       2            \                                                                \    
|                                                                                                                                                                 |    cos (x)   cos(x)|                                                                |    
|                                                 /    cos(x)\                                                                                2*(cos(x) + sin(x))*|1 + ------- + ------|     /    cos(x)\          /    cos(x)\                         |    
|                                          2      |1 + ------|*(cos(x) + sin(x))                                     2                                            |       2      sin(x)|   2*|1 + ------|*cos(x)   |1 + ------|*(cos(x) + sin(x))*cos(x)|    
|    3*(cos(x) + sin(x))   4*cos(x)   6*cos (x)   \    sin(x)/                     4*(cos(x) + sin(x))*cos(x)   3*cos (x)*(cos(x) + sin(x))                       \    sin (x)         /     \    sin(x)/          \    sin(x)/                         |  -x
|2 - ------------------- + -------- + --------- - ------------------------------ - -------------------------- - --------------------------- - ------------------------------------------ + --------------------- - -------------------------------------|*e  
|           sin(x)          sin(x)        2                   sin(x)                           2                             3                                  sin(x)                             sin(x)                            2                  |    
\                                      sin (x)                                              sin (x)                       sin (x)                                                                                                 sin (x)               /    
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                            sin(x)                                                                                                                           
$$\frac{\left(- \frac{\left(1 + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\sin{\left(x \right)}} - \frac{\left(1 + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{2 \left(1 + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{2 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \left(1 + \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)}{\sin{\left(x \right)}} - \frac{3 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)}{\sin{\left(x \right)}} - \frac{4 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{3 \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) \cos^{2}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + 2 + \frac{4 \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right) e^{- x}}{\sin{\left(x \right)}}$$