Mister Exam

Other calculators


1/cos^2(5x-1)

Derivative of 1/cos^2(5x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1      
1*-------------
     2         
  cos (5*x - 1)
11cos2(5x1)1 \cdot \frac{1}{\cos^{2}{\left(5 x - 1 \right)}}
d /        1      \
--|1*-------------|
dx|     2         |
  \  cos (5*x - 1)/
ddx11cos2(5x1)\frac{d}{d x} 1 \cdot \frac{1}{\cos^{2}{\left(5 x - 1 \right)}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1f{\left(x \right)} = 1 and g(x)=cos2(5x1)g{\left(x \right)} = \cos^{2}{\left(5 x - 1 \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of the constant 11 is zero.

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=cos(5x1)u = \cos{\left(5 x - 1 \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(5x1)\frac{d}{d x} \cos{\left(5 x - 1 \right)}:

      1. Let u=5x1u = 5 x - 1.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(5x1)\frac{d}{d x} \left(5 x - 1\right):

        1. Differentiate 5x15 x - 1 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

          The result is: 55

        The result of the chain rule is:

        5sin(5x1)- 5 \sin{\left(5 x - 1 \right)}

      The result of the chain rule is:

      10sin(5x1)cos(5x1)- 10 \sin{\left(5 x - 1 \right)} \cos{\left(5 x - 1 \right)}

    Now plug in to the quotient rule:

    10sin(5x1)cos3(5x1)\frac{10 \sin{\left(5 x - 1 \right)}}{\cos^{3}{\left(5 x - 1 \right)}}

  2. Now simplify:

    10sin(5x1)cos3(5x1)\frac{10 \sin{\left(5 x - 1 \right)}}{\cos^{3}{\left(5 x - 1 \right)}}


The answer is:

10sin(5x1)cos3(5x1)\frac{10 \sin{\left(5 x - 1 \right)}}{\cos^{3}{\left(5 x - 1 \right)}}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
     10*sin(5*x - 1)      
--------------------------
                2         
cos(5*x - 1)*cos (5*x - 1)
10sin(5x1)cos(5x1)cos2(5x1)\frac{10 \sin{\left(5 x - 1 \right)}}{\cos{\left(5 x - 1 \right)} \cos^{2}{\left(5 x - 1 \right)}}
The second derivative [src]
   /         2          \
   |    3*sin (-1 + 5*x)|
50*|1 + ----------------|
   |        2           |
   \     cos (-1 + 5*x) /
-------------------------
         2               
      cos (-1 + 5*x)     
50(3sin2(5x1)cos2(5x1)+1)cos2(5x1)\frac{50 \cdot \left(\frac{3 \sin^{2}{\left(5 x - 1 \right)}}{\cos^{2}{\left(5 x - 1 \right)}} + 1\right)}{\cos^{2}{\left(5 x - 1 \right)}}
The third derivative [src]
     /         2          \              
     |    3*sin (-1 + 5*x)|              
1000*|2 + ----------------|*sin(-1 + 5*x)
     |        2           |              
     \     cos (-1 + 5*x) /              
-----------------------------------------
                 3                       
              cos (-1 + 5*x)             
1000(3sin2(5x1)cos2(5x1)+2)sin(5x1)cos3(5x1)\frac{1000 \cdot \left(\frac{3 \sin^{2}{\left(5 x - 1 \right)}}{\cos^{2}{\left(5 x - 1 \right)}} + 2\right) \sin{\left(5 x - 1 \right)}}{\cos^{3}{\left(5 x - 1 \right)}}
The graph
Derivative of 1/cos^2(5x-1)