Mister Exam

Other calculators

Derivative of 1/cos^6t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1   
-------
   6   
cos (t)
$$\frac{1}{\cos^{6}{\left(t \right)}}$$
1/(cos(t)^6)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of cosine is negative sine:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   6*sin(t)   
--------------
          6   
cos(t)*cos (t)
$$\frac{6 \sin{\left(t \right)}}{\cos{\left(t \right)} \cos^{6}{\left(t \right)}}$$
The second derivative [src]
  /         2   \
  |    7*sin (t)|
6*|1 + ---------|
  |        2    |
  \     cos (t) /
-----------------
        6        
     cos (t)     
$$\frac{6 \left(\frac{7 \sin^{2}{\left(t \right)}}{\cos^{2}{\left(t \right)}} + 1\right)}{\cos^{6}{\left(t \right)}}$$
The third derivative [src]
   /          2   \       
   |    14*sin (t)|       
24*|5 + ----------|*sin(t)
   |        2     |       
   \     cos (t)  /       
--------------------------
            7             
         cos (t)          
$$\frac{24 \left(\frac{14 \sin^{2}{\left(t \right)}}{\cos^{2}{\left(t \right)}} + 5\right) \sin{\left(t \right)}}{\cos^{7}{\left(t \right)}}$$