Mister Exam

Derivative of 1/(ch(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1   
-------
cosh(x)
$$\frac{1}{\cosh{\left(x \right)}}$$
1/cosh(x)
The graph
The first derivative [src]
-sinh(x) 
---------
     2   
 cosh (x)
$$- \frac{\sinh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}$$
The second derivative [src]
           2   
     2*sinh (x)
-1 + ----------
          2    
      cosh (x) 
---------------
    cosh(x)    
$$\frac{\frac{2 \sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} - 1}{\cosh{\left(x \right)}}$$
The third derivative [src]
/          2   \        
|    6*sinh (x)|        
|5 - ----------|*sinh(x)
|         2    |        
\     cosh (x) /        
------------------------
            2           
        cosh (x)        
$$\frac{\left(- \frac{6 \sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} + 5\right) \sinh{\left(x \right)}}{\cosh^{2}{\left(x \right)}}$$