Mister Exam

Other calculators

Derivative of 1/4ln(x²-1)/(x²+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/   / 2    \\
|log\x  - 1/|
|-----------|
\     4     /
-------------
     2       
    x  + 1   
14log(x21)x2+1\frac{\frac{1}{4} \log{\left(x^{2} - 1 \right)}}{x^{2} + 1}
(log(x^2 - 1)/4)/(x^2 + 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=log(x21)f{\left(x \right)} = \log{\left(x^{2} - 1 \right)} and g(x)=4x2+4g{\left(x \right)} = 4 x^{2} + 4.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x21u = x^{2} - 1.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(x21)\frac{d}{d x} \left(x^{2} - 1\right):

      1. Differentiate x21x^{2} - 1 term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of the constant 1-1 is zero.

        The result is: 2x2 x

      The result of the chain rule is:

      2xx21\frac{2 x}{x^{2} - 1}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 4x2+44 x^{2} + 4 term by term:

      1. The derivative of the constant 44 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 8x8 x

      The result is: 8x8 x

    Now plug in to the quotient rule:

    8xlog(x21)+2x(4x2+4)x21(4x2+4)2\frac{- 8 x \log{\left(x^{2} - 1 \right)} + \frac{2 x \left(4 x^{2} + 4\right)}{x^{2} - 1}}{\left(4 x^{2} + 4\right)^{2}}

  2. Now simplify:

    x(x2(x21)log(x21)+1)2(x21)(x2+1)2\frac{x \left(x^{2} - \left(x^{2} - 1\right) \log{\left(x^{2} - 1 \right)} + 1\right)}{2 \left(x^{2} - 1\right) \left(x^{2} + 1\right)^{2}}


The answer is:

x(x2(x21)log(x21)+1)2(x21)(x2+1)2\frac{x \left(x^{2} - \left(x^{2} - 1\right) \log{\left(x^{2} - 1 \right)} + 1\right)}{2 \left(x^{2} - 1\right) \left(x^{2} + 1\right)^{2}}

The graph
02468-8-6-4-2-10102.5-2.5
The first derivative [src]
                           / 2    \
         x            x*log\x  - 1/
------------------- - -------------
  / 2    \ / 2    \              2 
2*\x  + 1/*\x  - 1/      / 2    \  
                       2*\x  + 1/  
xlog(x21)2(x2+1)2+x2(x21)(x2+1)- \frac{x \log{\left(x^{2} - 1 \right)}}{2 \left(x^{2} + 1\right)^{2}} + \frac{x}{2 \left(x^{2} - 1\right) \left(x^{2} + 1\right)}
The second derivative [src]
            2    /         2 \                                  
         2*x     |      4*x  |    /      2\                     
  -1 + -------   |-1 + ------|*log\-1 + x /                     
             2   |          2|                          2       
       -1 + x    \     1 + x /                       2*x        
- ------------ + -------------------------- - ------------------
    /      2\              /     2\           /     2\ /      2\
  2*\-1 + x /            2*\1 + x /           \1 + x /*\-1 + x /
----------------------------------------------------------------
                                  2                             
                             1 + x                              
2x2(x21)(x2+1)+(4x2x2+11)log(x21)2(x2+1)2x2x2112(x21)x2+1\frac{- \frac{2 x^{2}}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{\left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \log{\left(x^{2} - 1 \right)}}{2 \left(x^{2} + 1\right)} - \frac{\frac{2 x^{2}}{x^{2} - 1} - 1}{2 \left(x^{2} - 1\right)}}{x^{2} + 1}
The third derivative [src]
  /          2      /         2 \                   /          2 \       /         2 \  \
  |       4*x       |      2*x  |    /      2\      |       2*x  |       |      4*x  |  |
  |-3 + -------   6*|-1 + ------|*log\-1 + x /    3*|-1 + -------|     3*|-1 + ------|  |
  |           2     |          2|                   |           2|       |          2|  |
  |     -1 + x      \     1 + x /                   \     -1 + x /       \     1 + x /  |
x*|------------ - ---------------------------- + ------------------ + ------------------|
  |          2                     2             /     2\ /      2\   /     2\ /      2\|
  | /      2\              /     2\              \1 + x /*\-1 + x /   \1 + x /*\-1 + x /|
  \ \-1 + x /              \1 + x /                                                     /
-----------------------------------------------------------------------------------------
                                               2                                         
                                          1 + x                                          
x(6(2x2x2+11)log(x21)(x2+1)2+3(2x2x211)(x21)(x2+1)+3(4x2x2+11)(x21)(x2+1)+4x2x213(x21)2)x2+1\frac{x \left(- \frac{6 \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \log{\left(x^{2} - 1 \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{3 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{3 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{\frac{4 x^{2}}{x^{2} - 1} - 3}{\left(x^{2} - 1\right)^{2}}\right)}{x^{2} + 1}