/ / 2 \\
|log\x - 1/|
|-----------|
\ 4 /
-------------
2
x + 1
(log(x^2 - 1)/4)/(x^2 + 1)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \
x x*log\x - 1/
------------------- - -------------
/ 2 \ / 2 \ 2
2*\x + 1/*\x - 1/ / 2 \
2*\x + 1/
2 / 2 \
2*x | 4*x | / 2\
-1 + ------- |-1 + ------|*log\-1 + x /
2 | 2| 2
-1 + x \ 1 + x / 2*x
- ------------ + -------------------------- - ------------------
/ 2\ / 2\ / 2\ / 2\
2*\-1 + x / 2*\1 + x / \1 + x /*\-1 + x /
----------------------------------------------------------------
2
1 + x
/ 2 / 2 \ / 2 \ / 2 \ \
| 4*x | 2*x | / 2\ | 2*x | | 4*x | |
|-3 + ------- 6*|-1 + ------|*log\-1 + x / 3*|-1 + -------| 3*|-1 + ------| |
| 2 | 2| | 2| | 2| |
| -1 + x \ 1 + x / \ -1 + x / \ 1 + x / |
x*|------------ - ---------------------------- + ------------------ + ------------------|
| 2 2 / 2\ / 2\ / 2\ / 2\|
| / 2\ / 2\ \1 + x /*\-1 + x / \1 + x /*\-1 + x /|
\ \-1 + x / \1 + x / /
-----------------------------------------------------------------------------------------
2
1 + x