Mister Exam

Other calculators

Derivative of 1/4ln(x²-1)/(x²+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/   / 2    \\
|log\x  - 1/|
|-----------|
\     4     /
-------------
     2       
    x  + 1   
$$\frac{\frac{1}{4} \log{\left(x^{2} - 1 \right)}}{x^{2} + 1}$$
(log(x^2 - 1)/4)/(x^2 + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           / 2    \
         x            x*log\x  - 1/
------------------- - -------------
  / 2    \ / 2    \              2 
2*\x  + 1/*\x  - 1/      / 2    \  
                       2*\x  + 1/  
$$- \frac{x \log{\left(x^{2} - 1 \right)}}{2 \left(x^{2} + 1\right)^{2}} + \frac{x}{2 \left(x^{2} - 1\right) \left(x^{2} + 1\right)}$$
The second derivative [src]
            2    /         2 \                                  
         2*x     |      4*x  |    /      2\                     
  -1 + -------   |-1 + ------|*log\-1 + x /                     
             2   |          2|                          2       
       -1 + x    \     1 + x /                       2*x        
- ------------ + -------------------------- - ------------------
    /      2\              /     2\           /     2\ /      2\
  2*\-1 + x /            2*\1 + x /           \1 + x /*\-1 + x /
----------------------------------------------------------------
                                  2                             
                             1 + x                              
$$\frac{- \frac{2 x^{2}}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{\left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \log{\left(x^{2} - 1 \right)}}{2 \left(x^{2} + 1\right)} - \frac{\frac{2 x^{2}}{x^{2} - 1} - 1}{2 \left(x^{2} - 1\right)}}{x^{2} + 1}$$
The third derivative [src]
  /          2      /         2 \                   /          2 \       /         2 \  \
  |       4*x       |      2*x  |    /      2\      |       2*x  |       |      4*x  |  |
  |-3 + -------   6*|-1 + ------|*log\-1 + x /    3*|-1 + -------|     3*|-1 + ------|  |
  |           2     |          2|                   |           2|       |          2|  |
  |     -1 + x      \     1 + x /                   \     -1 + x /       \     1 + x /  |
x*|------------ - ---------------------------- + ------------------ + ------------------|
  |          2                     2             /     2\ /      2\   /     2\ /      2\|
  | /      2\              /     2\              \1 + x /*\-1 + x /   \1 + x /*\-1 + x /|
  \ \-1 + x /              \1 + x /                                                     /
-----------------------------------------------------------------------------------------
                                               2                                         
                                          1 + x                                          
$$\frac{x \left(- \frac{6 \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \log{\left(x^{2} - 1 \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{3 \left(\frac{2 x^{2}}{x^{2} - 1} - 1\right)}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{3 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} - 1\right) \left(x^{2} + 1\right)} + \frac{\frac{4 x^{2}}{x^{2} - 1} - 3}{\left(x^{2} - 1\right)^{2}}\right)}{x^{2} + 1}$$