Mister Exam

Other calculators

Derivative of 1/(3sqrt(2x-sin3x)^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          1          
---------------------
                    2
    ________________ 
3*\/ 2*x - sin(3*x)  
$$\frac{1}{3 \left(\sqrt{2 x - \sin{\left(3 x \right)}}\right)^{2}}$$
1/(3*(sqrt(2*x - sin(3*x)))^2)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Let .

              2. The derivative of sine is cosine:

              3. Then, apply the chain rule. Multiply by :

                1. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: goes to

                  So, the result is:

                The result of the chain rule is:

              So, the result is:

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        1                           
------------------*(-6 + 9*cos(3*x))
3*(2*x - sin(3*x))                  
------------------------------------
         3*(2*x - sin(3*x))         
$$\frac{\frac{1}{3 \left(2 x - \sin{\left(3 x \right)}\right)} \left(9 \cos{\left(3 x \right)} - 6\right)}{3 \left(2 x - \sin{\left(3 x \right)}\right)}$$
The second derivative [src]
                                 2
              2*(-2 + 3*cos(3*x)) 
-3*sin(3*x) + --------------------
              3*(-sin(3*x) + 2*x) 
----------------------------------
                         2        
        (-sin(3*x) + 2*x)         
$$\frac{- 3 \sin{\left(3 x \right)} + \frac{2 \left(3 \cos{\left(3 x \right)} - 2\right)^{2}}{3 \left(2 x - \sin{\left(3 x \right)}\right)}}{\left(2 x - \sin{\left(3 x \right)}\right)^{2}}$$
The third derivative [src]
                                 3                                
              2*(-2 + 3*cos(3*x))    18*(-2 + 3*cos(3*x))*sin(3*x)
-9*cos(3*x) + -------------------- - -----------------------------
                                2           -sin(3*x) + 2*x       
               (-sin(3*x) + 2*x)                                  
------------------------------------------------------------------
                                         2                        
                        (-sin(3*x) + 2*x)                         
$$\frac{- 9 \cos{\left(3 x \right)} - \frac{18 \left(3 \cos{\left(3 x \right)} - 2\right) \sin{\left(3 x \right)}}{2 x - \sin{\left(3 x \right)}} + \frac{2 \left(3 \cos{\left(3 x \right)} - 2\right)^{3}}{\left(2 x - \sin{\left(3 x \right)}\right)^{2}}}{\left(2 x - \sin{\left(3 x \right)}\right)^{2}}$$