Mister Exam

Other calculators

Derivative of 9*sqrt(x)/(sqrt(x)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     ___ 
 9*\/ x  
---------
  ___    
\/ x  + 1
$$\frac{9 \sqrt{x}}{\sqrt{x} + 1}$$
(9*sqrt(x))/(sqrt(x) + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        9                   9         
- -------------- + -------------------
               2       ___ /  ___    \
    /  ___    \    2*\/ x *\\/ x  + 1/
  2*\\/ x  + 1/                       
$$- \frac{9}{2 \left(\sqrt{x} + 1\right)^{2}} + \frac{9}{2 \sqrt{x} \left(\sqrt{x} + 1\right)}$$
The second derivative [src]
  /                           ___ / 1           2      \\
  |                         \/ x *|---- + -------------||
  |                               | 3/2     /      ___\||
  |   1           2               \x      x*\1 + \/ x //|
9*|- ---- - ------------- + ----------------------------|
  |   3/2     /      ___\                  ___          |
  \  x      x*\1 + \/ x /            1 + \/ x           /
---------------------------------------------------------
                        /      ___\                      
                      4*\1 + \/ x /                      
$$\frac{9 \left(\frac{\sqrt{x} \left(\frac{2}{x \left(\sqrt{x} + 1\right)} + \frac{1}{x^{\frac{3}{2}}}\right)}{\sqrt{x} + 1} - \frac{2}{x \left(\sqrt{x} + 1\right)} - \frac{1}{x^{\frac{3}{2}}}\right)}{4 \left(\sqrt{x} + 1\right)}$$
The third derivative [src]
   /                                                 ___ / 1           2                  2        \\
   |                         1           2         \/ x *|---- + -------------- + -----------------||
   |                        ---- + -------------         | 5/2    2 /      ___\                   2||
   |                         3/2     /      ___\         |x      x *\1 + \/ x /    3/2 /      ___\ ||
   | 1           1          x      x*\1 + \/ x /         \                        x   *\1 + \/ x / /|
27*|---- + -------------- + -------------------- - -------------------------------------------------|
   | 5/2    2 /      ___\      ___ /      ___\                               ___                    |
   \x      x *\1 + \/ x /    \/ x *\1 + \/ x /                         1 + \/ x                     /
-----------------------------------------------------------------------------------------------------
                                              /      ___\                                            
                                            8*\1 + \/ x /                                            
$$\frac{27 \left(- \frac{\sqrt{x} \left(\frac{2}{x^{2} \left(\sqrt{x} + 1\right)} + \frac{2}{x^{\frac{3}{2}} \left(\sqrt{x} + 1\right)^{2}} + \frac{1}{x^{\frac{5}{2}}}\right)}{\sqrt{x} + 1} + \frac{1}{x^{2} \left(\sqrt{x} + 1\right)} + \frac{\frac{2}{x \left(\sqrt{x} + 1\right)} + \frac{1}{x^{\frac{3}{2}}}}{\sqrt{x} \left(\sqrt{x} + 1\right)} + \frac{1}{x^{\frac{5}{2}}}\right)}{8 \left(\sqrt{x} + 1\right)}$$