___ 9*\/ x --------- ___ \/ x + 1
(9*sqrt(x))/(sqrt(x) + 1)
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
9 9
- -------------- + -------------------
2 ___ / ___ \
/ ___ \ 2*\/ x *\\/ x + 1/
2*\\/ x + 1/
/ ___ / 1 2 \\
| \/ x *|---- + -------------||
| | 3/2 / ___\||
| 1 2 \x x*\1 + \/ x //|
9*|- ---- - ------------- + ----------------------------|
| 3/2 / ___\ ___ |
\ x x*\1 + \/ x / 1 + \/ x /
---------------------------------------------------------
/ ___\
4*\1 + \/ x /
/ ___ / 1 2 2 \\
| 1 2 \/ x *|---- + -------------- + -----------------||
| ---- + ------------- | 5/2 2 / ___\ 2||
| 3/2 / ___\ |x x *\1 + \/ x / 3/2 / ___\ ||
| 1 1 x x*\1 + \/ x / \ x *\1 + \/ x / /|
27*|---- + -------------- + -------------------- - -------------------------------------------------|
| 5/2 2 / ___\ ___ / ___\ ___ |
\x x *\1 + \/ x / \/ x *\1 + \/ x / 1 + \/ x /
-----------------------------------------------------------------------------------------------------
/ ___\
8*\1 + \/ x /