Mister Exam

Other calculators

Derivative of |x^2+2x-3|

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
| 2          |
|x  + 2*x - 3|
$$\left|{\left(x^{2} + 2 x\right) - 3}\right|$$
|x^2 + 2*x - 3|
The graph
The first derivative [src]
              /      2      \
(2 + 2*x)*sign\-3 + x  + 2*x/
$$\left(2 x + 2\right) \operatorname{sign}{\left(x^{2} + 2 x - 3 \right)}$$
The second derivative [src]
  /         2           /      2      \       /      2      \\
2*\4*(1 + x) *DiracDelta\-3 + x  + 2*x/ + sign\-3 + x  + 2*x//
$$2 \left(4 \left(x + 1\right)^{2} \delta\left(x^{2} + 2 x - 3\right) + \operatorname{sign}{\left(x^{2} + 2 x - 3 \right)}\right)$$
The third derivative [src]
          /            /      2      \            2           /      2         \\
8*(1 + x)*\3*DiracDelta\-3 + x  + 2*x/ + 2*(1 + x) *DiracDelta\-3 + x  + 2*x, 1//
$$8 \left(x + 1\right) \left(2 \left(x + 1\right)^{2} \delta^{\left( 1 \right)}\left( x^{2} + 2 x - 3 \right) + 3 \delta\left(x^{2} + 2 x - 3\right)\right)$$