Mister Exam

Other calculators

Derivative of (-6)/(x^2+6*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -6    
--------
 2      
x  + 6*x
$$- \frac{6}{x^{2} + 6 x}$$
-6/(x^2 + 6*x)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-6*(-6 - 2*x)
-------------
           2 
 / 2      \  
 \x  + 6*x/  
$$- \frac{6 \left(- 2 x - 6\right)}{\left(x^{2} + 6 x\right)^{2}}$$
The second derivative [src]
   /             2\
   |    4*(3 + x) |
12*|1 - ----------|
   \    x*(6 + x) /
-------------------
     2        2    
    x *(6 + x)     
$$\frac{12 \left(1 - \frac{4 \left(x + 3\right)^{2}}{x \left(x + 6\right)}\right)}{x^{2} \left(x + 6\right)^{2}}$$
The third derivative [src]
     /             2\        
     |    2*(3 + x) |        
-144*|1 - ----------|*(3 + x)
     \    x*(6 + x) /        
-----------------------------
          3        3         
         x *(6 + x)          
$$- \frac{144 \left(1 - \frac{2 \left(x + 3\right)^{2}}{x \left(x + 6\right)}\right) \left(x + 3\right)}{x^{3} \left(x + 6\right)^{3}}$$