Mister Exam

Other calculators

Derivative of -sin(5*x)+4*cot(3*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-sin(5*x) + 4*cot(3*x)
sin(5x)+4cot(3x)- \sin{\left(5 x \right)} + 4 \cot{\left(3 x \right)}
-sin(5*x) + 4*cot(3*x)
Detail solution
  1. Differentiate sin(5x)+4cot(3x)- \sin{\left(5 x \right)} + 4 \cot{\left(3 x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=5xu = 5 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5cos(5x)5 \cos{\left(5 x \right)}

      So, the result is: 5cos(5x)- 5 \cos{\left(5 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(3x)=1tan(3x)\cot{\left(3 x \right)} = \frac{1}{\tan{\left(3 x \right)}}

        2. Let u=tan(3x)u = \tan{\left(3 x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(3x)\frac{d}{d x} \tan{\left(3 x \right)}:

          1. Rewrite the function to be differentiated:

            tan(3x)=sin(3x)cos(3x)\tan{\left(3 x \right)} = \frac{\sin{\left(3 x \right)}}{\cos{\left(3 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=sin(3x)f{\left(x \right)} = \sin{\left(3 x \right)} and g(x)=cos(3x)g{\left(x \right)} = \cos{\left(3 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=3xu = 3 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 33

              The result of the chain rule is:

              3cos(3x)3 \cos{\left(3 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=3xu = 3 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 33

              The result of the chain rule is:

              3sin(3x)- 3 \sin{\left(3 x \right)}

            Now plug in to the quotient rule:

            3sin2(3x)+3cos2(3x)cos2(3x)\frac{3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)}}

          The result of the chain rule is:

          3sin2(3x)+3cos2(3x)cos2(3x)tan2(3x)- \frac{3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}}{\cos^{2}{\left(3 x \right)} \tan^{2}{\left(3 x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(3x)=cos(3x)sin(3x)\cot{\left(3 x \right)} = \frac{\cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(3x)f{\left(x \right)} = \cos{\left(3 x \right)} and g(x)=sin(3x)g{\left(x \right)} = \sin{\left(3 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=3xu = 3 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 33

            The result of the chain rule is:

            3sin(3x)- 3 \sin{\left(3 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=3xu = 3 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 33

            The result of the chain rule is:

            3cos(3x)3 \cos{\left(3 x \right)}

          Now plug in to the quotient rule:

          3sin2(3x)3cos2(3x)sin2(3x)\frac{- 3 \sin^{2}{\left(3 x \right)} - 3 \cos^{2}{\left(3 x \right)}}{\sin^{2}{\left(3 x \right)}}

      So, the result is: 4(3sin2(3x)+3cos2(3x))cos2(3x)tan2(3x)- \frac{4 \left(3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}\right)}{\cos^{2}{\left(3 x \right)} \tan^{2}{\left(3 x \right)}}

    The result is: 4(3sin2(3x)+3cos2(3x))cos2(3x)tan2(3x)5cos(5x)- \frac{4 \left(3 \sin^{2}{\left(3 x \right)} + 3 \cos^{2}{\left(3 x \right)}\right)}{\cos^{2}{\left(3 x \right)} \tan^{2}{\left(3 x \right)}} - 5 \cos{\left(5 x \right)}

  2. Now simplify:

    5cos(5x)12sin2(3x)- 5 \cos{\left(5 x \right)} - \frac{12}{\sin^{2}{\left(3 x \right)}}


The answer is:

5cos(5x)12sin2(3x)- 5 \cos{\left(5 x \right)} - \frac{12}{\sin^{2}{\left(3 x \right)}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
            2                  
-12 - 12*cot (3*x) - 5*cos(5*x)
5cos(5x)12cot2(3x)12- 5 \cos{\left(5 x \right)} - 12 \cot^{2}{\left(3 x \right)} - 12
The second derivative [src]
                 /       2     \         
25*sin(5*x) + 72*\1 + cot (3*x)/*cot(3*x)
72(cot2(3x)+1)cot(3x)+25sin(5x)72 \left(\cot^{2}{\left(3 x \right)} + 1\right) \cot{\left(3 x \right)} + 25 \sin{\left(5 x \right)}
The third derivative [src]
                     2                                               
      /       2     \                          2      /       2     \
- 216*\1 + cot (3*x)/  + 125*cos(5*x) - 432*cot (3*x)*\1 + cot (3*x)/
216(cot2(3x)+1)2432(cot2(3x)+1)cot2(3x)+125cos(5x)- 216 \left(\cot^{2}{\left(3 x \right)} + 1\right)^{2} - 432 \left(\cot^{2}{\left(3 x \right)} + 1\right) \cot^{2}{\left(3 x \right)} + 125 \cos{\left(5 x \right)}