Detail solution
-
Apply the product rule:
; to find :
-
Apply the product rule:
; to find :
-
Differentiate term by term:
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Rewrite the function to be differentiated:
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
So, the result is:
-
The derivative of the constant is zero.
The result is:
; to find :
-
The derivative of is itself.
The result is:
; to find :
-
The derivative of cosine is negative sine:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ x x \ x
\(-sec(x) + 1)*e - e *sec(x)*tan(x)/*cos(x) - (-sec(x) + 1)*e *sin(x)
$$- \left(1 - \sec{\left(x \right)}\right) e^{x} \sin{\left(x \right)} + \left(\left(1 - \sec{\left(x \right)}\right) e^{x} - e^{x} \tan{\left(x \right)} \sec{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative
[src]
/ / / 2 \ \ \ x
\(-1 + sec(x))*cos(x) - \-1 + \1 + 2*tan (x)/*sec(x) + 2*sec(x)*tan(x) + sec(x)/*cos(x) + 2*(-1 + sec(x)*tan(x) + sec(x))*sin(x)/*e
$$\left(\left(\sec{\left(x \right)} - 1\right) \cos{\left(x \right)} + 2 \left(\tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \sin{\left(x \right)} - \left(\left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + 2 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)}\right) e^{x}$$
The third derivative
[src]
/ / / 2 \ / 2 \ \ / / 2 \ \ \ x
\-(-1 + sec(x))*sin(x) - \-1 + 3*\1 + 2*tan (x)/*sec(x) + 3*sec(x)*tan(x) + \5 + 6*tan (x)/*sec(x)*tan(x) + sec(x)/*cos(x) + 3*(-1 + sec(x)*tan(x) + sec(x))*cos(x) + 3*\-1 + \1 + 2*tan (x)/*sec(x) + 2*sec(x)*tan(x) + sec(x)/*sin(x)/*e
$$\left(- \left(\sec{\left(x \right)} - 1\right) \sin{\left(x \right)} + 3 \left(\tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)} + 3 \left(\left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + 2 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \sin{\left(x \right)} - \left(3 \left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \left(6 \tan^{2}{\left(x \right)} + 5\right) \tan{\left(x \right)} \sec{\left(x \right)} + 3 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)}\right) e^{x}$$