Mister Exam

Other calculators

Derivative of (-secx+1)exp(x)cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
               x       
(-sec(x) + 1)*e *cos(x)
$$\left(1 - \sec{\left(x \right)}\right) e^{x} \cos{\left(x \right)}$$
((-sec(x) + 1)*exp(x))*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Rewrite the function to be differentiated:

          2. Let .

          3. Apply the power rule: goes to

          4. Then, apply the chain rule. Multiply by :

            1. The derivative of cosine is negative sine:

            The result of the chain rule is:

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      ; to find :

      1. The derivative of is itself.

      The result is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/               x    x              \                         x       
\(-sec(x) + 1)*e  - e *sec(x)*tan(x)/*cos(x) - (-sec(x) + 1)*e *sin(x)
$$- \left(1 - \sec{\left(x \right)}\right) e^{x} \sin{\left(x \right)} + \left(\left(1 - \sec{\left(x \right)}\right) e^{x} - e^{x} \tan{\left(x \right)} \sec{\left(x \right)}\right) \cos{\left(x \right)}$$
The second derivative [src]
/                       /     /         2   \                                  \                                                \  x
\(-1 + sec(x))*cos(x) - \-1 + \1 + 2*tan (x)/*sec(x) + 2*sec(x)*tan(x) + sec(x)/*cos(x) + 2*(-1 + sec(x)*tan(x) + sec(x))*sin(x)/*e 
$$\left(\left(\sec{\left(x \right)} - 1\right) \cos{\left(x \right)} + 2 \left(\tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \sin{\left(x \right)} - \left(\left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + 2 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)}\right) e^{x}$$
The third derivative [src]
/                        /       /         2   \                            /         2   \                       \                                                     /     /         2   \                                  \       \  x
\-(-1 + sec(x))*sin(x) - \-1 + 3*\1 + 2*tan (x)/*sec(x) + 3*sec(x)*tan(x) + \5 + 6*tan (x)/*sec(x)*tan(x) + sec(x)/*cos(x) + 3*(-1 + sec(x)*tan(x) + sec(x))*cos(x) + 3*\-1 + \1 + 2*tan (x)/*sec(x) + 2*sec(x)*tan(x) + sec(x)/*sin(x)/*e 
$$\left(- \left(\sec{\left(x \right)} - 1\right) \sin{\left(x \right)} + 3 \left(\tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)} + 3 \left(\left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + 2 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \sin{\left(x \right)} - \left(3 \left(2 \tan^{2}{\left(x \right)} + 1\right) \sec{\left(x \right)} + \left(6 \tan^{2}{\left(x \right)} + 5\right) \tan{\left(x \right)} \sec{\left(x \right)} + 3 \tan{\left(x \right)} \sec{\left(x \right)} + \sec{\left(x \right)} - 1\right) \cos{\left(x \right)}\right) e^{x}$$