Mister Exam

Other calculators


-1/(2*sqrt(x)*(1+x))

Derivative of -1/(2*sqrt(x)*(1+x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      -1       
---------------
    ___        
2*\/ x *(1 + x)
$$- \frac{1}{2 \sqrt{x} \left(x + 1\right)}$$
d /      -1       \
--|---------------|
dx|    ___        |
  \2*\/ x *(1 + x)/
$$\frac{d}{d x} \left(- \frac{1}{2 \sqrt{x} \left(x + 1\right)}\right)$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. Apply the power rule: goes to

            The result is:

          The result is:

        So, the result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 /      ___   1 + x\ 
-|- 2*\/ x  - -----| 
 |              ___| 
 \            \/ x / 
---------------------
                2    
     4*x*(1 + x)     
$$- \frac{- 2 \sqrt{x} - \frac{x + 1}{\sqrt{x}}}{4 x \left(x + 1\right)^{2}}$$
The second derivative [src]
 /    ___   1 + x               /1     2  \ /    ___   1 + x\     /    ___   1 + x\\ 
 |2*\/ x  + -----       1 + x   |- + -----|*|2*\/ x  + -----|   2*|2*\/ x  + -----|| 
 |            ___   4 - -----   \x   1 + x/ |            ___|     |            ___|| 
 |          \/ x          x                 \          \/ x /     \          \/ x /| 
-|--------------- - --------- + ----------------------------- + -------------------| 
 |        2             3/2                   x                      x*(1 + x)     | 
 \       x             x                                                           / 
-------------------------------------------------------------------------------------
                                               2                                     
                                      8*(1 + x)                                      
$$- \frac{\frac{\left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right) \left(\frac{2}{x + 1} + \frac{1}{x}\right)}{x} + \frac{2 \cdot \left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right)}{x \left(x + 1\right)} + \frac{2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}}{x^{2}} - \frac{4 - \frac{x + 1}{x}}{x^{\frac{3}{2}}}}{8 \left(x + 1\right)^{2}}$$
The third derivative [src]
                                    /    ___   1 + x\   /    ___   1 + x\ /3       8           4    \   /1     2  \ /    ___   1 + x\                                               /    ___   1 + x\      /    ___   1 + x\     /1     2  \ /    ___   1 + x\
    /    1 + x\     /    1 + x\   4*|2*\/ x  + -----|   |2*\/ x  + -----|*|-- + -------- + ---------|   |- + -----|*|2*\/ x  + -----|   /    1 + x\ /1     2  \     /    1 + x\   8*|2*\/ x  + -----|   12*|2*\/ x  + -----|   2*|- + -----|*|2*\/ x  + -----|
  3*|2 - -----|   3*|4 - -----|     |            ___|   |            ___| | 2          2   x*(1 + x)|   \x   1 + x/ |            ___|   |4 - -----|*|- + -----|   6*|4 - -----|     |            ___|      |            ___|     \x   1 + x/ |            ___|
    \      x  /     \      x  /     \          \/ x /   \          \/ x / \x    (1 + x)             /               \          \/ x /   \      x  / \x   1 + x/     \      x  /     \          \/ x /      \          \/ x /                 \          \/ x /
- ------------- - ------------- + ------------------- + --------------------------------------------- + ----------------------------- - ----------------------- - ------------- + ------------------- + -------------------- + -------------------------------
        5/2             5/2                 3                                 x                                        2                           3/2              3/2                 2                             2                   x*(1 + x)           
       x               x                   x                                                                          x                           x                x   *(1 + x)        x *(1 + x)            x*(1 + x)                                        
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                   2                                                                                                                          
                                                                                                                         16*(1 + x)                                                                                                                           
$$\frac{\frac{\left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right) \left(\frac{8}{\left(x + 1\right)^{2}} + \frac{4}{x \left(x + 1\right)} + \frac{3}{x^{2}}\right)}{x} + \frac{2 \cdot \left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right) \left(\frac{2}{x + 1} + \frac{1}{x}\right)}{x \left(x + 1\right)} + \frac{\left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right) \left(\frac{2}{x + 1} + \frac{1}{x}\right)}{x^{2}} - \frac{\left(4 - \frac{x + 1}{x}\right) \left(\frac{2}{x + 1} + \frac{1}{x}\right)}{x^{\frac{3}{2}}} + \frac{12 \cdot \left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right)}{x \left(x + 1\right)^{2}} + \frac{8 \cdot \left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right)}{x^{2} \left(x + 1\right)} + \frac{4 \cdot \left(2 \sqrt{x} + \frac{x + 1}{\sqrt{x}}\right)}{x^{3}} - \frac{6 \cdot \left(4 - \frac{x + 1}{x}\right)}{x^{\frac{3}{2}} \left(x + 1\right)} - \frac{3 \cdot \left(2 - \frac{x + 1}{x}\right)}{x^{\frac{5}{2}}} - \frac{3 \cdot \left(4 - \frac{x + 1}{x}\right)}{x^{\frac{5}{2}}}}{16 \left(x + 1\right)^{2}}$$
The graph
Derivative of -1/(2*sqrt(x)*(1+x))