Mister Exam

Other calculators

Derivative of -1/(tg(x/2)+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   -1     
----------
   /x\    
tan|-| + 3
   \2/    
$$- \frac{1}{\tan{\left(\frac{x}{2} \right)} + 3}$$
-1/(tan(x/2) + 3)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        3. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 /         2/x\\ 
 |      tan |-|| 
 |  1       \2/| 
-|- - - -------| 
 \  2      2   / 
-----------------
              2  
  /   /x\    \   
  |tan|-| + 3|   
  \   \2/    /   
$$- \frac{- \frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}}{\left(\tan{\left(\frac{x}{2} \right)} + 3\right)^{2}}$$
The second derivative [src]
              /         2/x\         \
              |  1 + tan |-|         |
/       2/x\\ |          \2/      /x\|
|1 + tan |-||*|- ----------- + tan|-||
\        \2// |          /x\      \2/|
              |   3 + tan|-|         |
              \          \2/         /
--------------------------------------
                         2            
             /       /x\\             
           2*|3 + tan|-||             
             \       \2//             
$$\frac{\left(\tan{\left(\frac{x}{2} \right)} - \frac{\tan^{2}{\left(\frac{x}{2} \right)} + 1}{\tan{\left(\frac{x}{2} \right)} + 3}\right) \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)}{2 \left(\tan{\left(\frac{x}{2} \right)} + 3\right)^{2}}$$
The third derivative [src]
              /                               2                         \
              |                  /       2/x\\      /       2/x\\    /x\|
              |                3*|1 + tan |-||    6*|1 + tan |-||*tan|-||
/       2/x\\ |         2/x\     \        \2//      \        \2//    \2/|
|1 + tan |-||*|1 + 3*tan |-| + ---------------- - ----------------------|
\        \2// |          \2/                2                  /x\      |
              |                 /       /x\\            3 + tan|-|      |
              |                 |3 + tan|-||                   \2/      |
              \                 \       \2//                            /
-------------------------------------------------------------------------
                                           2                             
                               /       /x\\                              
                             4*|3 + tan|-||                              
                               \       \2//                              
$$\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{x}{2} \right)} + 1 - \frac{6 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{\tan{\left(\frac{x}{2} \right)} + 3} + \frac{3 \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{\left(\tan{\left(\frac{x}{2} \right)} + 3\right)^{2}}\right)}{4 \left(\tan{\left(\frac{x}{2} \right)} + 3\right)^{2}}$$