-1 ---------- /x\ tan|-| + 3 \2/
-1/(tan(x/2) + 3)
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
Now plug in to the quotient rule:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
/ 2/x\\ | tan |-|| | 1 \2/| -|- - - -------| \ 2 2 / ----------------- 2 / /x\ \ |tan|-| + 3| \ \2/ /
/ 2/x\ \ | 1 + tan |-| | / 2/x\\ | \2/ /x\| |1 + tan |-||*|- ----------- + tan|-|| \ \2// | /x\ \2/| | 3 + tan|-| | \ \2/ / -------------------------------------- 2 / /x\\ 2*|3 + tan|-|| \ \2//
/ 2 \ | / 2/x\\ / 2/x\\ /x\| | 3*|1 + tan |-|| 6*|1 + tan |-||*tan|-|| / 2/x\\ | 2/x\ \ \2// \ \2// \2/| |1 + tan |-||*|1 + 3*tan |-| + ---------------- - ----------------------| \ \2// | \2/ 2 /x\ | | / /x\\ 3 + tan|-| | | |3 + tan|-|| \2/ | \ \ \2// / ------------------------------------------------------------------------- 2 / /x\\ 4*|3 + tan|-|| \ \2//