Mister Exam

Derivative of -ln(-sin(x)-cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-log(-sin(x) - cos(x))
$$- \log{\left(- \sin{\left(x \right)} - \cos{\left(x \right)} \right)}$$
-log(-sin(x) - cos(x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of sine is cosine:

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of cosine is negative sine:

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-(-cos(x) + sin(x)) 
--------------------
  -sin(x) - cos(x)  
$$- \frac{\sin{\left(x \right)} - \cos{\left(x \right)}}{- \sin{\left(x \right)} - \cos{\left(x \right)}}$$
The second derivative [src]
                      2
    (-cos(x) + sin(x)) 
1 + -------------------
                      2
     (cos(x) + sin(x)) 
$$\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}} + 1$$
The third derivative [src]
  /                      2\                   
  |    (-cos(x) + sin(x)) |                   
2*|1 + -------------------|*(-cos(x) + sin(x))
  |                      2|                   
  \     (cos(x) + sin(x)) /                   
----------------------------------------------
               cos(x) + sin(x)                
$$\frac{2 \left(\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}} + 1\right) \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$