Mister Exam

Derivative of (-ln2)cos((log2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-log(2)*cos(log(2*x))
$$- \log{\left(2 \right)} \cos{\left(\log{\left(2 x \right)} \right)}$$
d                        
--(-log(2)*cos(log(2*x)))
dx                       
$$\frac{d}{d x} - \log{\left(2 \right)} \cos{\left(\log{\left(2 x \right)} \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
log(2)*sin(log(2*x))
--------------------
         x          
$$\frac{\log{\left(2 \right)} \sin{\left(\log{\left(2 x \right)} \right)}}{x}$$
The second derivative [src]
-(-cos(log(2*x)) + sin(log(2*x)))*log(2) 
-----------------------------------------
                     2                   
                    x                    
$$- \frac{\left(\sin{\left(\log{\left(2 x \right)} \right)} - \cos{\left(\log{\left(2 x \right)} \right)}\right) \log{\left(2 \right)}}{x^{2}}$$
The third derivative [src]
(-3*cos(log(2*x)) + sin(log(2*x)))*log(2)
-----------------------------------------
                     3                   
                    x                    
$$\frac{\left(\sin{\left(\log{\left(2 x \right)} \right)} - 3 \cos{\left(\log{\left(2 x \right)} \right)}\right) \log{\left(2 \right)}}{x^{3}}$$
The graph
Derivative of (-ln2)cos((log2x))