-4 ------------- 2 cos (2 - 4*y)
-4/cos(2 - 4*y)^2
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
So, the result is:
Now simplify:
The answer is:
-32*sin(-2 + 4*y)
-----------------
3
cos (2 - 4*y)
/ 2 \
| 3*sin (2*(-1 + 2*y))|
-128*|1 + --------------------|
| 2 |
\ cos (2*(-1 + 2*y)) /
-------------------------------
2
cos (2*(-1 + 2*y))
/ 2 \
| 3*sin (2*(-1 + 2*y))|
-2048*|2 + --------------------|*sin(2*(-1 + 2*y))
| 2 |
\ cos (2*(-1 + 2*y)) /
--------------------------------------------------
3
cos (2*(-1 + 2*y))