Mister Exam

Other calculators

Derivative of -4/cos^(2)(2-4y)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     -4      
-------------
   2         
cos (2 - 4*y)
$$- \frac{4}{\cos^{2}{\left(2 - 4 y \right)}}$$
-4/cos(2 - 4*y)^2
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of cosine is negative sine:

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result is:

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
-32*sin(-2 + 4*y)
-----------------
     3           
  cos (2 - 4*y)  
$$- \frac{32 \sin{\left(4 y - 2 \right)}}{\cos^{3}{\left(2 - 4 y \right)}}$$
The second derivative [src]
     /         2              \
     |    3*sin (2*(-1 + 2*y))|
-128*|1 + --------------------|
     |        2               |
     \     cos (2*(-1 + 2*y)) /
-------------------------------
          2                    
       cos (2*(-1 + 2*y))      
$$- \frac{128 \left(\frac{3 \sin^{2}{\left(2 \left(2 y - 1\right) \right)}}{\cos^{2}{\left(2 \left(2 y - 1\right) \right)}} + 1\right)}{\cos^{2}{\left(2 \left(2 y - 1\right) \right)}}$$
The third derivative [src]
      /         2              \                  
      |    3*sin (2*(-1 + 2*y))|                  
-2048*|2 + --------------------|*sin(2*(-1 + 2*y))
      |        2               |                  
      \     cos (2*(-1 + 2*y)) /                  
--------------------------------------------------
                   3                              
                cos (2*(-1 + 2*y))                
$$- \frac{2048 \left(\frac{3 \sin^{2}{\left(2 \left(2 y - 1\right) \right)}}{\cos^{2}{\left(2 \left(2 y - 1\right) \right)}} + 2\right) \sin{\left(2 \left(2 y - 1\right) \right)}}{\cos^{3}{\left(2 \left(2 y - 1\right) \right)}}$$