Mister Exam

Derivative of -e^asinh(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  asinh(x)
-e        
$$- e^{\operatorname{asinh}{\left(x \right)}}$$
d /  asinh(x)\
--\-e        /
dx            
$$\frac{d}{d x} \left(- e^{\operatorname{asinh}{\left(x \right)}}\right)$$
The graph
The first derivative [src]
  asinh(x) 
-e         
-----------
   ________
  /      2 
\/  1 + x  
$$- \frac{e^{\operatorname{asinh}{\left(x \right)}}}{\sqrt{x^{2} + 1}}$$
The second derivative [src]
/    1           x     \  asinh(x)
|- ------ + -----------|*e        
|       2           3/2|          
|  1 + x    /     2\   |          
\           \1 + x /   /          
$$\left(- \frac{1}{x^{2} + 1} + \frac{x}{\left(x^{2} + 1\right)^{\frac{3}{2}}}\right) e^{\operatorname{asinh}{\left(x \right)}}$$
The third derivative [src]
     /      1            x     \  asinh(x)
-3*x*|- --------- + -----------|*e        
     |          2           5/2|          
     |  /     2\    /     2\   |          
     \  \1 + x /    \1 + x /   /          
$$- 3 x \left(- \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{x}{\left(x^{2} + 1\right)^{\frac{5}{2}}}\right) e^{\operatorname{asinh}{\left(x \right)}}$$
The graph
Derivative of -e^asinh(x)