-cos(3*x) - sin(3*x)
-cos(3*x) - sin(3*x)
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
So, the result is:
The result is:
Now simplify:
The answer is:
-3*cos(3*x) + 3*sin(3*x)
9*(cos(3*x) + sin(3*x))