Mister Exam

Other calculators

Derivative of -a*sin^3(x/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3/x\
-a*sin |-|
       \3/
$$- a \sin^{3}{\left(\frac{x}{3} \right)}$$
(-a)*sin(x/3)^3
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The first derivative [src]
      2/x\    /x\
-a*sin |-|*cos|-|
       \3/    \3/
$$- a \sin^{2}{\left(\frac{x}{3} \right)} \cos{\left(\frac{x}{3} \right)}$$
The second derivative [src]
  /   2/x\        2/x\\    /x\
a*|sin |-| - 2*cos |-||*sin|-|
  \    \3/         \3//    \3/
------------------------------
              3               
$$\frac{a \left(\sin^{2}{\left(\frac{x}{3} \right)} - 2 \cos^{2}{\left(\frac{x}{3} \right)}\right) \sin{\left(\frac{x}{3} \right)}}{3}$$
The third derivative [src]
  /       2/x\        2/x\\    /x\
a*|- 2*cos |-| + 7*sin |-||*cos|-|
  \        \3/         \3//    \3/
----------------------------------
                9                 
$$\frac{a \left(7 \sin^{2}{\left(\frac{x}{3} \right)} - 2 \cos^{2}{\left(\frac{x}{3} \right)}\right) \cos{\left(\frac{x}{3} \right)}}{9}$$