Mister Exam

Other calculators


-96x/(x^2+12)^2

Derivative of -96x/(x^2+12)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  -96*x   
----------
         2
/ 2     \ 
\x  + 12/ 
$$- \frac{96 x}{\left(x^{2} + 12\right)^{2}}$$
d /  -96*x   \
--|----------|
dx|         2|
  |/ 2     \ |
  \\x  + 12/ /
$$\frac{d}{d x} \left(- \frac{96 x}{\left(x^{2} + 12\right)^{2}}\right)$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                      2  
      96         384*x   
- ---------- + ----------
           2            3
  / 2     \    / 2     \ 
  \x  + 12/    \x  + 12/ 
$$\frac{384 x^{2}}{\left(x^{2} + 12\right)^{3}} - \frac{96}{\left(x^{2} + 12\right)^{2}}$$
The second derivative [src]
      /         2 \
      |      6*x  |
384*x*|3 - -------|
      |          2|
      \    12 + x /
-------------------
              3    
     /      2\     
     \12 + x /     
$$\frac{384 x \left(- \frac{6 x^{2}}{x^{2} + 12} + 3\right)}{\left(x^{2} + 12\right)^{3}}$$
The third derivative [src]
     /                   /          2 \\
     |                 2 |       8*x  ||
     |              2*x *|-3 + -------||
     |         2         |           2||
     |      6*x          \     12 + x /|
1152*|1 - ------- + -------------------|
     |          2               2      |
     \    12 + x          12 + x       /
----------------------------------------
                        3               
               /      2\                
               \12 + x /                
$$\frac{1152 \cdot \left(\frac{2 x^{2} \cdot \left(\frac{8 x^{2}}{x^{2} + 12} - 3\right)}{x^{2} + 12} - \frac{6 x^{2}}{x^{2} + 12} + 1\right)}{\left(x^{2} + 12\right)^{3}}$$
The graph
Derivative of -96x/(x^2+12)^2