Mister Exam

Derivative of -4sin(4x+180)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-4*sin(4*x + 180)
4sin(4x+180)- 4 \sin{\left(4 x + 180 \right)}
-4*sin(4*x + 180)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=4x+180u = 4 x + 180.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(4x+180)\frac{d}{d x} \left(4 x + 180\right):

      1. Differentiate 4x+1804 x + 180 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        2. The derivative of the constant 180180 is zero.

        The result is: 44

      The result of the chain rule is:

      4cos(4x+180)4 \cos{\left(4 x + 180 \right)}

    So, the result is: 16cos(4x+180)- 16 \cos{\left(4 x + 180 \right)}

  2. Now simplify:

    16cos(4x+180)- 16 \cos{\left(4 x + 180 \right)}


The answer is:

16cos(4x+180)- 16 \cos{\left(4 x + 180 \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
-16*cos(4*x + 180)
16cos(4x+180)- 16 \cos{\left(4 x + 180 \right)}
The second derivative [src]
64*sin(4*(45 + x))
64sin(4(x+45))64 \sin{\left(4 \left(x + 45\right) \right)}
The third derivative [src]
256*cos(4*(45 + x))
256cos(4(x+45))256 \cos{\left(4 \left(x + 45\right) \right)}
The graph
Derivative of -4sin(4x+180)