Mister Exam

Derivative of -2tg4x-2ctg5t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-2*tan(4*x) - 2*cot(5*t)
2tan(4x)2cot(5t)- 2 \tan{\left(4 x \right)} - 2 \cot{\left(5 t \right)}
-2*tan(4*x) - 2*cot(5*t)
Detail solution
  1. Differentiate 2tan(4x)2cot(5t)- 2 \tan{\left(4 x \right)} - 2 \cot{\left(5 t \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Rewrite the function to be differentiated:

        tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        Now plug in to the quotient rule:

        4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

      So, the result is: 2(4sin2(4x)+4cos2(4x))cos2(4x)- \frac{2 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)}}

    2. The derivative of the constant 2cot(5t)- 2 \cot{\left(5 t \right)} is zero.

    The result is: 2(4sin2(4x)+4cos2(4x))cos2(4x)- \frac{2 \left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right)}{\cos^{2}{\left(4 x \right)}}

  2. Now simplify:

    8cos2(4x)- \frac{8}{\cos^{2}{\left(4 x \right)}}


The answer is:

8cos2(4x)- \frac{8}{\cos^{2}{\left(4 x \right)}}

The first derivative [src]
          2     
-8 - 8*tan (4*x)
8tan2(4x)8- 8 \tan^{2}{\left(4 x \right)} - 8
The second derivative [src]
    /       2     \         
-64*\1 + tan (4*x)/*tan(4*x)
64(tan2(4x)+1)tan(4x)- 64 \left(\tan^{2}{\left(4 x \right)} + 1\right) \tan{\left(4 x \right)}
The third derivative [src]
     /       2     \ /         2     \
-256*\1 + tan (4*x)/*\1 + 3*tan (4*x)/
256(tan2(4x)+1)(3tan2(4x)+1)- 256 \left(\tan^{2}{\left(4 x \right)} + 1\right) \left(3 \tan^{2}{\left(4 x \right)} + 1\right)