Detail solution
-
Let .
-
The derivative of is .
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
$$\frac{2 x}{x^{2} - 3}$$
The second derivative
[src]
/ 2 \
| 2*x |
2*|1 - -------|
| 2|
\ -3 + x /
---------------
2
-3 + x
$$\frac{2 \left(- \frac{2 x^{2}}{x^{2} - 3} + 1\right)}{x^{2} - 3}$$
The third derivative
[src]
/ 2 \
| 4*x |
4*x*|-3 + -------|
| 2|
\ -3 + x /
------------------
2
/ 2\
\-3 + x /
$$\frac{4 x \left(\frac{4 x^{2}}{x^{2} - 3} - 3\right)}{\left(x^{2} - 3\right)^{2}}$$