Mister Exam

Other calculators


log(x^3-2*x)

Derivative of log(x^3-2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 3      \
log\x  - 2*x/
$$\log{\left(x^{3} - 2 x \right)}$$
d /   / 3      \\
--\log\x  - 2*x//
dx               
$$\frac{d}{d x} \log{\left(x^{3} - 2 x \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        2
-2 + 3*x 
---------
  3      
 x  - 2*x
$$\frac{3 x^{2} - 2}{x^{3} - 2 x}$$
The second derivative [src]
               2
    /        2\ 
    \-2 + 3*x / 
6 - ------------
     2 /      2\
    x *\-2 + x /
----------------
          2     
    -2 + x      
$$\frac{6 - \frac{\left(3 x^{2} - 2\right)^{2}}{x^{2} \left(x^{2} - 2\right)}}{x^{2} - 2}$$
The third derivative [src]
  /                                3\
  |      /        2\    /        2\ |
  |    9*\-2 + 3*x /    \-2 + 3*x / |
2*|3 - ------------- + -------------|
  |             2                  2|
  |       -2 + x        2 /      2\ |
  \                    x *\-2 + x / /
-------------------------------------
               /      2\             
             x*\-2 + x /             
$$\frac{2 \cdot \left(3 - \frac{9 \cdot \left(3 x^{2} - 2\right)}{x^{2} - 2} + \frac{\left(3 x^{2} - 2\right)^{3}}{x^{2} \left(x^{2} - 2\right)^{2}}\right)}{x \left(x^{2} - 2\right)}$$
The graph
Derivative of log(x^3-2*x)