Mister Exam

Other calculators


log(x+1)/x^2

Derivative of log(x+1)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x + 1)
----------
     2    
    x     
$$\frac{\log{\left(x + 1 \right)}}{x^{2}}$$
log(x + 1)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1        2*log(x + 1)
---------- - ------------
 2                 3     
x *(x + 1)        x      
$$\frac{1}{x^{2} \left(x + 1\right)} - \frac{2 \log{\left(x + 1 \right)}}{x^{3}}$$
The second derivative [src]
     1           4       6*log(1 + x)
- -------- - --------- + ------------
         2   x*(1 + x)         2     
  (1 + x)                     x      
-------------------------------------
                   2                 
                  x                  
$$\frac{- \frac{1}{\left(x + 1\right)^{2}} - \frac{4}{x \left(x + 1\right)} + \frac{6 \log{\left(x + 1 \right)}}{x^{2}}}{x^{2}}$$
The third derivative [src]
  /   1       12*log(1 + x)       3            9     \
2*|-------- - ------------- + ---------- + ----------|
  |       3          3                 2    2        |
  \(1 + x)          x         x*(1 + x)    x *(1 + x)/
------------------------------------------------------
                           2                          
                          x                           
$$\frac{2 \left(\frac{1}{\left(x + 1\right)^{3}} + \frac{3}{x \left(x + 1\right)^{2}} + \frac{9}{x^{2} \left(x + 1\right)} - \frac{12 \log{\left(x + 1 \right)}}{x^{3}}\right)}{x^{2}}$$
The graph
Derivative of log(x+1)/x^2