Mister Exam

Other calculators

Derivative of logx\1+2*logsin(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)                
------ + 2*log(sin(x))
  1                   
log(x)1+2log(sin(x))\frac{\log{\left(x \right)}}{1} + 2 \log{\left(\sin{\left(x \right)} \right)}
log(x)/1 + 2*log(sin(x))
Detail solution
  1. Differentiate log(x)1+2log(sin(x))\frac{\log{\left(x \right)}}{1} + 2 \log{\left(\sin{\left(x \right)} \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      So, the result is: 1x\frac{1}{x}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=sin(x)u = \sin{\left(x \right)}.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result of the chain rule is:

        cos(x)sin(x)\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}

      So, the result is: 2cos(x)sin(x)\frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}}

    The result is: 2cos(x)sin(x)+1x\frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{1}{x}

  2. Now simplify:

    2tan(x)+1x\frac{2}{\tan{\left(x \right)}} + \frac{1}{x}


The answer is:

2tan(x)+1x\frac{2}{\tan{\left(x \right)}} + \frac{1}{x}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
1   2*cos(x)
- + --------
x    sin(x) 
2cos(x)sin(x)+1x\frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{1}{x}
The second derivative [src]
 /              2   \
 |    1    2*cos (x)|
-|2 + -- + ---------|
 |     2       2    |
 \    x     sin (x) /
(2+2cos2(x)sin2(x)+1x2)- (2 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{1}{x^{2}})
The third derivative [src]
  /          3              \
  |1    2*cos (x)   2*cos(x)|
2*|-- + --------- + --------|
  | 3       3        sin(x) |
  \x     sin (x)            /
2(2cos(x)sin(x)+2cos3(x)sin3(x)+1x3)2 \left(\frac{2 \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2 \cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + \frac{1}{x^{3}}\right)