The first derivative
[src]
4 3
atan (5*x) 20*atan (5*x)*log(x)
---------- + --------------------
x 2
1 + 25*x
$$\frac{20 \log{\left(x \right)} \operatorname{atan}^{3}{\left(5 x \right)}}{25 x^{2} + 1} + \frac{\operatorname{atan}^{4}{\left(5 x \right)}}{x}$$
The second derivative
[src]
/ 2 \
2 | atan (5*x) 100*(-3 + 10*x*atan(5*x))*log(x) 40*atan(5*x)|
atan (5*x)*|- ---------- - -------------------------------- + -------------|
| 2 2 / 2\|
| x / 2\ x*\1 + 25*x /|
\ \1 + 25*x / /
$$\left(- \frac{100 \left(10 x \operatorname{atan}{\left(5 x \right)} - 3\right) \log{\left(x \right)}}{\left(25 x^{2} + 1\right)^{2}} + \frac{40 \operatorname{atan}{\left(5 x \right)}}{x \left(25 x^{2} + 1\right)} - \frac{\operatorname{atan}^{2}{\left(5 x \right)}}{x^{2}}\right) \operatorname{atan}^{2}{\left(5 x \right)}$$
The third derivative
[src]
/ / 2 2 \ \
| | 2 3 45*x*atan(5*x) 100*x *atan (5*x)| |
| 500*|- atan (5*x) + --------- - -------------- + -----------------|*log(x) |
| 3 2 | 2 2 2 | |
|atan (5*x) 30*atan (5*x) \ 1 + 25*x 1 + 25*x 1 + 25*x / 150*(-3 + 10*x*atan(5*x))*atan(5*x)|
2*|---------- - -------------- + -------------------------------------------------------------------------- - -----------------------------------|*atan(5*x)
| 3 2 / 2\ 2 2 |
| x x *\1 + 25*x / / 2\ / 2\ |
\ \1 + 25*x / x*\1 + 25*x / /
$$2 \left(\frac{500 \left(\frac{100 x^{2} \operatorname{atan}^{2}{\left(5 x \right)}}{25 x^{2} + 1} - \frac{45 x \operatorname{atan}{\left(5 x \right)}}{25 x^{2} + 1} - \operatorname{atan}^{2}{\left(5 x \right)} + \frac{3}{25 x^{2} + 1}\right) \log{\left(x \right)}}{\left(25 x^{2} + 1\right)^{2}} - \frac{150 \left(10 x \operatorname{atan}{\left(5 x \right)} - 3\right) \operatorname{atan}{\left(5 x \right)}}{x \left(25 x^{2} + 1\right)^{2}} - \frac{30 \operatorname{atan}^{2}{\left(5 x \right)}}{x^{2} \left(25 x^{2} + 1\right)} + \frac{\operatorname{atan}^{3}{\left(5 x \right)}}{x^{3}}\right) \operatorname{atan}{\left(5 x \right)}$$