Mister Exam

Other calculators

Derivative of log((x-2)/(x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x - 2\
log|-----|
   \x + 2/
$$\log{\left(\frac{x - 2}{x + 2} \right)}$$
log((x - 2)/(x + 2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  1      x - 2  \
(x + 2)*|----- - --------|
        |x + 2          2|
        \        (x + 2) /
--------------------------
          x - 2           
$$\frac{\left(x + 2\right) \left(- \frac{x - 2}{\left(x + 2\right)^{2}} + \frac{1}{x + 2}\right)}{x - 2}$$
The second derivative [src]
/     -2 + x\ /  1        1  \
|-1 + ------|*|------ + -----|
\     2 + x / \-2 + x   2 + x/
------------------------------
            -2 + x            
$$\frac{\left(\frac{x - 2}{x + 2} - 1\right) \left(\frac{1}{x + 2} + \frac{1}{x - 2}\right)}{x - 2}$$
The third derivative [src]
  /     -2 + x\ /      1          1              1        \
2*|-1 + ------|*|- --------- - -------- - ----------------|
  \     2 + x / |          2          2   (-2 + x)*(2 + x)|
                \  (-2 + x)    (2 + x)                    /
-----------------------------------------------------------
                           -2 + x                          
$$\frac{2 \left(\frac{x - 2}{x + 2} - 1\right) \left(- \frac{1}{\left(x + 2\right)^{2}} - \frac{1}{\left(x - 2\right) \left(x + 2\right)} - \frac{1}{\left(x - 2\right)^{2}}\right)}{x - 2}$$